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Summary

Dynamic Modeling and Performance Analysis of Rotary Drilling Sys-
tems with a Downhole Passive Regulator

The exploration and production of energy resources (i.e., hydrocarbon-, geothermal-
based) trapped in the subsurface rock formations require drilling deep well-bores.
Besides, in an effort to mitigate the effects of global climate change by reducing
CO2 emission into the atmosphere, the sequestration of CO2 in depleted hydro-
carbon reservoirs is being developed at an industrial scale. Injection of CO2 in
the subsurface also requires extensive drilling of boreholes.

For all these purposes of drilling, it is essential that the rate-of-penetration (ROP)
is increased to minimize the cost of operation. To this end, innovative drilling
technologies have been pursued within the energy industry. One of such technolo-
gies, which is the focus of this research, is the downhole regulator AST developed
by Tomax AS – a Norwegian drilling supporting service company. This regulator
is installed in the bottom-hole-assembly (BHA, the lower part of the drill-string),
about 40−60 m above the drill-bit. By design, the main components of AST con-
sist of an internal preloaded spring and a helical spline designed with a particular
lead angle and radius. Based on reported field results, use of the AST significantly
improves the drilling performance in deviated well-bore and in heterogeneous rock
formations.

Recent research efforts have shed some lights on the mechanisms by which this
downhole regulator enables the increase in drilling performance for vertical bore-
holes and homogeneous rock formations. However, some open challenges still
exist, particularly related on understanding how such performance increase can
also be expected when drilling deviated well-bores and/or drilling in interbedded
formations. Also, the lumped-parameter model of the drill-string, used so far to
analyze the role of the AST, fails to capture the complex, distributed dynamics
of the drill-string. Therefore, this thesis primarily contributes to the dynamic
modeling of drilling systems equipped with the AST in the separated cases in-
volving deviated well-bore, heterogeneous rock formations, and/or distributed
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vi Summary

dynamics of the drill-string. Development of the necessary numerical tools and
the associated performance analyses are also performed to reveal the underlying
mechanisms of such performance increase with the regulator.

The thesis consists of three main parts. In the first part, dynamic models of the
drill-string system with and without AST are developed for the case of deviated
drilling trajectory in a homogeneous rock formation. In particular, this drilling
scenario induces frictional contact between the BHA and the borehole wall. A
lumped-parameter (discrete) modeling approach is employed to focus on the first
dominant modes of the axial and torsional dynamics of the drilling system, which
are coupled at the bit-rock interface as well as at the downhole regulator. This
leads to models formulated in terms of discontinuous delay differential equations
with state-dependent delays. Time stepping-based methods are formulated to con-
duct numerical analysis of these models. Moreover, the effect of AST on drilling
performance is evaluated for varying deviation angles of the drilling trajectory.
This analysis shows that the downhole regulator can also improve drilling perfor-
mance significantly with deviated well scenarios. In addition, a study of the tool
design concluded that lowering the stiffness value of the AST internal spring can
improve drilling performance, while the optimal lead angle of the helical spline
for drilling performance is achieved at 30◦.

In the second part of the thesis, the scenario of drilling in interbedded formations,
i.e., drilling through rock layers with distinct properties, is considered. As a first
step, novel bit-rock interface laws for a two-rock-layers system are constructed
under a quasi-stationary drilling condition. These interface laws establish the re-
lationship between the forces acting on the bit (namely, weight-on-bit and torque-
on-bit) and the depth-of-cut as a function of the bit engagement in the two-layers
system, which is treated as an evolution parameter. These interface laws take
into account the bit shape profile. As a second step, these bit-rock interaction
laws are employed to construct a dynamic (lumped-parameter) model for drilling
systems in interbedded formations (for the cases with and without the downhole
regulator). Using this model, the effect of AST on drilling performance is studied
in the context of interbedded rock formations. In particular, the dynamic analyses
on the limit-cycling behavior reveal how the increased axial vibrations induced
by the AST lead to reduced frictional losses in the bit-rock interaction. This re-
duction in frictional dissipation leads to an increase of drilling performance. In
addition, the so-called E − S diagrams for drilling in interbedded formation are
constructed to support the analysis on the effect of AST on drilling performance.

In the last part of the thesis, a distributed parameter model for the drill-string
system with the AST is constructed. In this modeling framework, the drill-pipe
is represented as a continuum model in the form of partial differential equations
(PDEs), capturing all axial and torsional dynamic modes. The BHA is described
by a discrete model governed by discontinuous ordinary differential equations
(ODEs) and the evolution of the rock surface under the bit is characterized by a
PDE. These sub-systems are assembled and form a discontinuous coupled PDE-
ODE-PDE system model, including a non-smooth bit-rock interaction model.
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Simulation-based studies on this model are pursued for cases without and with the
AST, in which the drilling performance in both cases is analyzed. These numerical
studies show that the use of the AST regulator can assist to improve the drilling
performance and to decrease both the frictional loading at the drill-bit and the
dynamic loading on the drill-string. Moreover, a robust performance-based design
of the AST is investigated using the proposed model under the variations of drill-
string and rock parameters. Based on the numerical studies, this AST design is
robust in terms of drilling performance under a realistic parametric space of the
drilling operations, the drill-string, and the rock formation.

As the final summary, the thesis presents novel models and dynamic analyses
of the performance of drilling systems including a downhole regulator, in the
presence of closer-to-real drilling conditions, such as deviated wells, interbedded
formations, and distributed dynamics of long drill-string structure. It is shown
that the downhole regulator consistently improves the rate of penetration and
drilling efficiency.
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Chapter 1

Introduction

Abstract - This chapter presents a high-level introduction to this thesis. It starts
with a brief description of energy resources and the drilling process in Section 1.1,
and describes drilling systems, the AST downhole regulator and the motivation
for the research in this thesis in Section 1.2. Next, in Section 1.3, it provides a
high-level literature review on dynamic modeling and analysis of (rotary) drilling
systems without and with the presence of AST regulator and also on physical
models for the bit-rock interaction. More detailed literature reviews on dedicated
topics are included in the introductory sections of the individual chapters. This
chapter also presents, in Sections 1.4 and 1.5, the objectives and main contribu-
tions of the thesis. A list of the publications is provided in Section 1.6. Finally,
an outline of the thesis is given in Section 1.7.

1.1 Energy resources and drilling process
The exploration and production of the energy resources trapped in the subsurface
rock formations have been an essential endeavour for the development of industry
and society. Nevertheless, global climate change requires urgent reduction of
CO2 emissions into the atmosphere, which is now also gradually affecting current
strategies of energy exploration and production (E&P) companies [11]. As such,
both industry and society now recognize the urgent need for making the energy
transition and for implementing specific targets and measures of carbon footprint
reduction (decarbonization).

In the context of energy transition, renewable energy resources (such as wind
and solar energies, but also geothermal energy) have been explored intensively
and utilized gradually for heating and electrification [133, 61, 139, 161]. Such
efforts work at the frontier of decreasing our dependencies on the conventional
energy resources (e.g., crude oils, coals). Moreover, several examples of carbon
footprint reduction strategies are the development of hydrogen-based resources
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2 Chapter 1. Introduction

(the so-called blue and green hydrogen energy generations) and carbon capture
and sequestration (CCS). In the past decades, renewable hydrogen resources have
been extensively explored as fuel and energy carriers that can be developed jointly
with conventional energy resources and other renewable resources to form a hy-
drogen value chain [29]. In CCS, the CO2 is sequestered in depleted hydrocarbon
reservoirs where this process has also been developed to reach an industrial scale
[130]. In addition, CCS can be potentially combined in the hydrogen value chain,
particularly for producing the blue hydrogen.

To accommodate all the strategic purposes above, extensive drilling and well op-
erations play important roles as the key to success in the exploration-production
activities of (conventional) oil-gas and (renewable) geothermal reservoirs (as de-
picted in Figures 1.1 and 1.2, respectively) and also in the realization of the CO2
emissions reduction via the injection of CO2 in the subsurface on CCS projects
(as depicted in Figure 1.3). In fact, already since the early 1900s drilling tech-
nologies have been developed extensively to produce oil and gas in both offshore
and onshore fields. In such drilling operations, challenging well-bore trajectories
often need to be created under highly uncertain and extreme environmental con-
ditions related to the subsurface formations. For example, a drilling process in
the Valemon gas and condensate field (located in the northern part of the North
Sea within the Norwegian sector) has to manage the extraction of resources from
the rock in high-pressure and high-temperature (HPHT) reservoirs with an ex-
pected reservoir pressure of 865 bar (≈ 8.65×107 Pa) and reservoir temperature of
170◦Celsius located at approximately 4423 m-TVDSS (meter-True Vertical Depth
Sub Sea) [135].

Consequently, to recover resources from the subsurface, robust and reliable drilling
technologies are required, particularly to deliver optimal drilling performance
(e.g., in terms of rate of penetration and drilling efficiency) to warrant econom-
ically feasible operations and simultaneously ensure safe drilling processes. We
care to stress that the reduction of drilling costs is an important factor in up-
scaling drilling technology for the development of geothermal energy and CCS, as
drilling costs make up a significant portion of the total operational cost [138, 193].

1.2 Drilling systems and the AST downhole
regulator

Rotary drilling systems with the Polycrystalline-Diamond-Compact (PDC) bit
technology at the bottom-end, as depicted in Figure 1.4, is the common tool used
for drilling process into the subsurface in the exploration and production of energy
resources. PDC bits, as depicted in Figure 1.5, are recognized as the most efficient
drill bit types [9]; yet they are prone to severe self-excited vibrations induced by
the bit-rock interaction [54, 72].

In general, a rotary drilling system is composed of three major parts: a drilling
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Figure 1.1: Hydrocarbon resources [176].

Figure 1.2: Enhanced geothermal systems (EGS) schematic [62].

Figure 1.3: Carbon capture and storage (CCS) chain [110] – an example of carbon
footprint reduction strategies.
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rig at the surface, a drill-string and a drill-bit as depicted in Figure 1.4. The rig
consists of two major sub-parts, namely a hoisting system and a top-drive system.
The hoisting system acts to adjust the hook-load (the axial force in the upward
direction) in order to optimally transfer the downward force, due to the total
weight of the drill-string, through the drill-pipes to the drill-bit. The top-drive
system generates the required torque and also imposes a nominal angular velocity
to rotate the drill-string and the bit for cutting rock at the bit.

Moreover, the drill-string consists of two main parts: the upper part is mainly
composed by a serial connection of drill-pipes with different sizes, and the lower
part is known as the bottom-hole-assembly (BHA) with characteristic lengths
indicated in Figure 1.4. The BHA is the heaviest part of the drill-string as it
is composed of a set of heavy tubes, called drill-collar, which are designed to
transmit the weight to the bit. This assembly is connected to the drill-bit and
used to transfer the force and torque imposed at the surface to the bit for the
rock-cutting process. Some downhole tools can be installed at specific locations
on the BHA in order to improve the drilling performance.

In drilling processes, the key performance indicators are the drilling efficiency
and the rate-of-penetration (ROP). The drilling efficiency is defined as the ratio
between the energy devoted to the cutting process and the total energy dissipated
at the bit. This efficiency is influenced by the wear state of the drill-bit, which
can be affected by the frictional contact force at the interface between the rock
and the bit (wearflat). Therefore, this efficiency can be equivalently defined as
the ratio between the intrinsic specific energy of the associated rock layer and the
mechanical-specific-energy (MSE) [58, 145, 59]. Note that MSE is the quantity (in
the unit of pressure) representing the amount of energy dissipated to drill a unit
volume of rock, where it accounts for both the work spent to cut the rock and for
frictional dissipation. In drilling practice, a lower MSE quantity is desirable by
engineers and operators, as it indicates higher efficiency in rock cutting process.
On the other hand, the ROP (also known as drilling speed) measures how quickly
the drill-string advances the drill bit through the subsurface formations. This
quantity is expressed in feet per hour (ft/hr) or meters per hour (m/hr). It directly
affects the cost-effectiveness of drilling operations.

As a matter of fact, one of the factors that can reduce drilling performance is
self-excited vibrations. Drilling systems experience different types of self-excited
vibrations, such as axial, lateral, and torsional vibrations, which lead to bit bounc-
ing, whirling, and torsional stick-slip, respectively [190]. These types of vibrations
lead to damage to the drilling equipment (i.e., in the BHA), early fatigue of drill
pipes, and premature failure of the bits [101, 37], which consequently cause a
decrease in drilling efficiency and ROP and increased rig down-time. It is worth
noting that purely eliminating such vibrations in drilling systems is inconceivable
in practice; therefore, limiting the magnitude of these vibrations is desirable.

As an example of drilling efficiency improvement, it is desired to have the ability to
manage the dynamics of the drill-string such that the contact force and frictional
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Bit

Drill-string

BHA
O(100 - 300 m)

O(1 - 10 km)

O(10 - 50 cm)

Ω0H0

AST

Drill-pipes

Top-drive
system

Hoisting
system

Figure 1.4: Schematic overview of rotary drilling system equipped with the AST
and the PDC bit in a vertical well-bore.

Figure 1.5: Polycrystalline-Diamond-Compact (PDC) bit [162].

torque at the bit-rock interface become lower, which would consequently decrease
the frictional losses at the bit and allow for more energy to be used for the rock
cutting process. This thesis investigates whether, how and to which extent such
a goal can be achieved by the presence of a particular downhole tool in the BHA.
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In the next section, we review different types of measures employed in drilling
system design to improve (optimize) drilling performance indicators, such as effi-
ciency and ROP. Nevertheless, the main focus of this thesis is on the modeling and
analysis of a particular downhole tool, the AST [158, 140, 141]. The AST acts
as the passive downhole regulator mechanism for drilling performance and has
been started to be formally modeled and analyzed in [182, 181]. This downhole
tool has been developed by Tomax AS – a Norwegian drilling supporting service
company [173], and has been deployed in field since 2005.

1.2.1 Drill-string system design for drilling performance

The energy industry has developed a wide range of innovative technologies in many
parts of the drilling system for improving drilling performance in terms of rate of
penetration (ROP) and drilling efficiency. Based on field operations, performance
can be improved in various ways: drill-string (BHA) system design (including
bit design), active feedback control strategies implemented at the surface and
downhole, and the use of passive downhole tools (e.g., a mechanical regulator
mechanism) — that will be summarized below.

Drill-string (BHA) system design Field case studies in [26, 135] show that
drilling performance improvement can be obtained via drill-string (BHA) design,
e.g., by utilizing advanced bit design and employing a rotary-steerable-system
(RSS) and a downhole drilling mechanics module. Advanced bit design is con-
sidered to balance drilling processes with low aggressiveness, particularly through
HPHT rock formations, for controlling the depth-of-cut and mitigating the down-
hole shocks. The RSS provides a steering capability (i.e., sufficient power with
better weight transfer) to drive the bit performance allowing for drilling more
complex wellbores (i.e., horizontal/deviated wellbores). A downhole drilling me-
chanics module is able to provide real-time axial, lateral, and torsional shock and
vibration data. This module is installed below the measurement-while-drilling
(MWD) tool in the BHA and enables to tune surface drilling parameters, i.e.,
applied weight and top angular velocity.

Active feedback control strategies Furthermore, improving drilling perfor-
mance can be also carried out by implementing active feedback control strategies
for optimizing drilling operational parameters to mitigate (torsional) stick-slip
vibrations [100, 65], which may be detrimental to drilling performance. These
active control systems are the automation technologies commonly installed in
drilling rigs at surface (e.g., on the top drive systems) and aimed at optimizing
the RPM of the top drive systems.

Application examples of these drilling automation technologies in the field are
Torque-Feedback [84], Soft-Torque [150], Soft-Speed [102], and Z-Torque [64].
In addition, the studies in [52, 88] show some field results on the applications
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of automatic trajectory control algorithms applied in downhole rotary steerable
systems (RSS) to deliver improved ROP and geosteering capability in drilling
operations. As motivated by these implementation results of drilling automation
technologies in fields, further theoretical and experimental studies have also been
conducted that lead to the development of model-based active control designs to
mitigate torsional stick-slip vibrations; see for example [91, 92, 159, 51, 126, 124,
123, 40, 125, 122, 39, 35, 36, 177, 149, 183, 49] where models of torsional dynamics
were considered, and [189, 32, 107, 28, 34, 155, 24, 166] where models of coupled
axial-torsional dynamics were used.

Passive downhole tools In real drilling operations, the utilization of passive
mechanical regulators installed downhole (i.e., in the BHA) has also been con-
sidered as another strategy for improving drilling performance. In [25, 12], the
use of a downhole tool, namely the drilling agitator tool (DAT, also known as an
axial oscillation tool), in field operations has been reported. This downhole tool
regulates the weight transfer to the drill bit by inducing a low frequency and low
amplitude of axial vibrations, and such a mechanism improves the ROP. Some
other downhole tools and mechanisms have been designed mainly for attenuat-
ing the torsional stick-slip vibrations, e.g., the shock sub [126, 4], the nonlinear
energy sink (NES) with a nonlinear passive targeted energy transfer mechanism
[178, 179, 180], and damping subs with a distributed vibration damping mecha-
nism [41].

As the main focus of this thesis, the AST of Tomax AS has been widely used
in drilling operations world-wide [158, 140, 10], particularly for suppressing the
occurrence of stick-slip vibrations and improving drilling performance (i.e., in
terms of ROP and MSE), also involving horizontal drilling (i.e., for deviated
wellbore) and heterogeneous rock formations. In [99], a combined implementation
of PDC bits, Z-Torque, and AST technologies in drilling operations involving
carbonate and interbedded shale lithology has been shown to be the most effective
strategy for achieving ROP improvement that led to a reduction in the overall
drilling cost. In the next section, a brief introduction to the AST regulator is
presented.

1.2.2 The AST downhole regulator

In this section, we describe the design of the AST downhole regulator developed
by the company Tomax AS [173]. We will also discuss field observations on the
influence of deploying this tool in drilling systems with PDC bits on drilling
performance.

Modern fixed-cutter PDC drill-bit technology has shown high efficiency in the rock
cutting process; however, its interaction with the rock formation has also proven
to be a potential source for vibrations leading to dynamic forces and shocks with
significant destructive levels to the bit itself, the instrumented BHA, and the drill-
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Figure 1.6: The schematic of AST design, see further in [158, 140, 141].

string connections [72]. To overcome this operational challenge of the PDC bit,
the AST is designed as a passive downhole tool to prolong the bit life (i.e., less
damage) and thus enable drilling performance to be maintained in an optimal
way [158, 140, 141].

An impression of the AST regulator developed by Tomax AS is depicted in Figure
1.6. By design, this downhole regulator consists of two main components: an
internal preloaded spring and a helical spline designed with a particular lead
angle and radius. The helical spline introduces an holonomic constraint on the
AST that couples the axial and torsional dynamics of the drill-string system. The
internal spring of AST is used for storing and releasing excessive energy from the
bit/rock interaction that involves the cutting process and the frictional contact
between the drill-bit and the rock layers. This downhole regulator is typically
installed in the BHA (the lower part of the drill-string, see Figure 1.4), about
40− 60 m above the drill-bit.

The first testing of a prototype of this AST regulator took place in 2005 at the
Ullrigg test facility in Stavanger supported by two Norwegian operators (Statoil
and Norsk Hydro); these same companies later merged and became what is known
today as Equinor. In this test, the recorded results have shown that the regula-
tor led to a significant reduction in the torque-on-bit (TOB) and a measurable
improvement in drilling performance (ROP) [158]. Together with BP, these three
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Figure 1.7: Schematic overview of the limited-range AST type (TT-series) [173].

Figure 1.8: Schematic overview of the full-range AST type (X-series) [173].

companies continued to implement this regulator in the field.

Figures 1.7 and 1.8 show two types of AST regulators commonly used in drilling
activities. The first one in Figure 1.7 is the limited-range type AST (a TT series),
which has a specific operational threshold in terms of weight- and/or torque-
on-bit. Figure 1.8 shows the second type as the next generation of AST with a
full-range type (a X series). The latter type provides a more extensive operational
capability in terms of drilling parameters and well curvature [173].

Figure 1.9 shows the comparison of post-drilling conditions of the drill bits con-
ducted in Ullrig drilling test facility in Norway for the cases without and with
the AST as reported in [158]. This comparison gives field-based validation for an
improved condition of the bit is obtained when the drilling system is equipped
with the AST.

In [14], Equinor, which has used the AST technology since 2006, also shared rele-
vant drilling records that cover the full field implementations of the two types of
AST regulators (the limited-range and full-range types) for drilling operations in
the Gullfaks platforms located in the Norwegian Continental Self (NCS). Based
on these reported field results, the use of the AST downhole regulators signifi-
cantly improved the drilling performance in terms of ROP and drilling efficiency,
particularly more positive results were achieved with the full-range type of AST.
This also shows the potential for a design improvement (towards the full-range
regulator) on such a downhole regulator that can deliver an increased positive
effect on drilling performance. Moreover, the drilling processes included in these
records involved not only vertical wells but also deviated well trajectories and
interbedded formations with heterogeneous rock properties.

These findings of field implementations motivate the goal of this thesis, where
we aim to use a physics-based dynamical modeling approach to gain insight into
possible mechanisms that may explain the improved performance brought by the
AST as observed in the field. The state of the art on the modelling and analysis of
the dynamics of drilling systems (with and without the AST downhole regulator)
is described in the next section.
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a) Without the AST

b) With the AST

Figure 1.9: Comparison of post-drilling conditions of the drill bits conducted in
Ullrig drilling test facility in Norway for the cases without and with the AST
[158].

1.3 State of the art on the modeling and
analysis of the dynamics of drilling systems

Models for drilling systems can (coarsely) be categorized based on: (i) the type
of model used for the bit-rock interaction and (ii) the type of model used for the
drill-string dynamics. In Section 1.3.1, a summary of the development of bit-
rock interaction models (also known as the bit-rock interface laws) that support
the dynamical modeling of drilling systems is presented. This interaction model
enables the determination of the reaction forces and torques at the bit that act
as the bottom boundary conditions for the models of the drill-string dynamics.
In Section 1.3.2, we will concisely discuss the most important types of dynamical
models for drilling systems. In Section 1.3.3, we will extend the description of the
state of the art to drilling systems equipped with the AST downhole regulator.
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1.3.1 Bit-rock interaction
In rock cutting mechanics involving PDC bits, the bit-rock interaction involves
two coexistent phenomena, namely cutting and frictional contact [71].

As motivated by field observations indicating a decreasing reactive torque-on-bit
with increasing angular velocity of the bit [37], velocity-weakening bit-rock in-
terface laws were developed and studied to explain the occurrence of torsional
stick-slip vibrations [136, 174, 42, 175, 94, 157, 148]. These rate-dependent inter-
face laws postulate this inherent velocity-weakening characteristic in the bit-rock
interface as the causal effect of the onset of torsional stick-slip vibrations and
typically are of frictional type (i.e., attributed to the Stribeck effect).

In [58], a phenomenological model (also known as the “DD model”) of the bit-rock
interaction was proposed, where it is derived based on the reaction forces acting on
a single PDC cutter, each decomposed into two components associated with these
basic phenomena: cutting and friction. [59, 194] completed the formulation of the
bit-rock interface laws based on this DD model that was utilized to analyze the
response of the PDC bit for steady-state drilling conditions in homogeneous rock
formations. In these interface laws, the reaction force and torque associated with
the cutting process and frictional contact are rate-independent, as supported by
the experimental evidence on the absence of a rate effect in the bit-rock interaction
reported in [127, 144, 75, 142]. Moreover, the reaction force and torque exerted
on the bit are dependent on rock and bit design parameters related to the cutting
and frictional components of the bit-rock interaction. In [59], a deterministic
parameter estimation technique (i.e., a least-square based method) was proposed
to estimate these bit-rock parameters based on downhole data of real drilling
process: weight-on-bit, torque-on-bit, bit axial and angular velocities; see further
implementation in [30].

The interface laws are an essential ingredient in the vibrational modeling of drilling
systems. This will be discussed further in the next section.

1.3.2 Modeling and analysis of drilling systems
In order to analyze and optimize drilling performance (i.e., in terms of ROP
and efficiency as the key performance indicators), suitable values of operational
drilling parameters imposed at the surface, such as weight-on-bit (WOB) and
angular speed, must be set by drilling operators on the rig. For this optimization
purpose, a dynamic model of drill-string dynamics is required. Another reason
for the development of dynamical models for drilling systems is the desire to gain
insight into the mechanisms leading to axial, torsional, and lateral vibrations
– as discussed in Section 1.2. For example, the severity of torsional stick-slip
vibrations increases with higher applied weight on the drill bit and lower rotary
speeds imposed at the surface [37]. Therefore, a physical model that describes
the dynamical characteristics of drilling systems can shed light on the optimal
solutions for drilling rig operators on how to mitigate or suppress such stick-slip
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vibrations and improve drilling performance.

Based on [154], two model classifications of the drill-string dynamics are con-
sidered, namely the lumped-parameter and the distributed-parameter models.
For the description of low-dimensional drill-string dynamics, lumped-parameter
models have been used. Distributed-parameter models (or discretized variants of
those) include a much richer description of the vibrational dynamics, at the cost
of model complexity, and they are infinite-dimensional system models.

We care to stress that this thesis focuses on the axial and torsional dynamics of
drill-string that are coupled by rate-independent interface laws. The modeling of
drilling system dynamics has received wide attention in the literature and wide
variety of models has been developed: models of drill-string dynamics as proposed
in previous works, e.g., models of torsional dynamics in [37, 92, 91, 126, 116, 114,
123, 124, 122, 149, 132, 42, 152, 151, 156, 23, 35, 36, 83, 109], models of coupled
lateral-torsional dynamics of drill-string in [7, 188, 105, 115], models of coupled
axial-lateral dynamics in [50], models of coupled axial-torsional dynamics with
rate-dependent interface laws in [33, 153, 151, 155, 24], and models of coupled
axial, torsional, and lateral dynamics in [174, 175, 51]. In the next sections, we
summarize the modeling and analysis of drill-string dynamics incorporated with
rate-independent bit-rock interface laws for both modeling approaches: lumped-
and distributed-parameter approaches.

1.3.2.1 Lumped-parameter models with rate-independent interface laws

In the early 2000s, [143, 145, 146, 147] have presented a two degrees-of-freedom
(DOFs) lumped-parameter model of drill-string dynamics, where the axial and
torsional dynamics are coupled by the rate-independent bit-rock interface laws
developed in [58, 59]. This modeling approach, also known as the “RGD model”
in this work, has been the avant-garde work to investigate the onset of self-excited
torsional stick-slip vibrations on the drill-string due to the coupling between its
axial and torsional dynamics via the rate-independent interface laws.

We follow the argument summarized in [147, 192], based on the simulation stud-
ies considering the rate-independent interface laws, that the observed velocity-
weakening torque-on-bit is an actual consequence, rather than a cause, of the
self-excited torsional stick-slip vibrations. The occurrence of these stick-slip vi-
brations is argued to be due to a complex dynamic coupling between the axial
and torsional degrees-of-freedom (DOFs) of the drilling system.

In more detail, the velocity-weakening effect on the torque-on-bit is affected by a
combination of the physical properties of the bit-rock interface (i.e., a combina-
tion of rock and bit design parameters associated with the cutting and frictional
components) and of the drill-string. Therefore, this velocity-weakening effect is
not a constitutive (intrinsic) property of the bit-rock interface as assumed in the
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rate-dependent laws, where this assumption is not supported by experimental
evidence.

This reasoning based on the rate-independent bit-rock interaction laws is sup-
ported by two facts. First, kinematically controlled lab experiments with a single
PDC cutter [85, 44, 43] and a PDC bit [75] show no significant dependency of the
reactive force response on cutter (bit) velocities. Second, the significant influence
of the bit design on the onset of the torsional stick-slip vibrations was reported
based on real field cases [72, 48].

In [78], the RGD model was further analyzed, particularly to reveal that the
apparent velocity-weakening effect on the mean torque applied on the bit (being
responsible for the growth of the amplitude of the torsional stick-slip vibrations)
is a consequence of the axial stick-slip, i.e., due to the intermittent decrease of
the frictional contact force on the bit-rock interaction. Moreover, the regenerative
effect associated with the rock cutting process acts as the main actor responsible
for the coupling of axial and torsional oscillations and for the existence of self-
excited stick-slip vibrations on the drilling system.

In more detail, as the motion of the PDC bit follows a helical path in the rock cut-
ting process, the depth-of-cut and, consequently, the cutting force are dependent
on the current and delayed axial positions of the bit, and this process is repeated
such that it creates a complex dynamic coupling of the two modes of oscillations.
This phenomenon is an analogue of the chattering phenomena in metal machining
(cutting) processes [172, 163, 67, 89]. In addition, a discontinuous (nonlinearity)
term present at the boundary condition of the RGD model is due to the frictional
contact taking place at the bit wearflat-rock interface; note that the wearflat is
the blunt part of the cutter (bit). More detailed explanations that support this
mechanism underlying the onset of self-excited torsional stick-slip vibrations due
to the regenerative effect associated with the rock cutting process are the stabil-
ity analysis based on the simulation study in [98] and its associated experimental
work in [97].

In [57], the RGDmodel was used to study further the torsional stick-slip vibrations
via a linear stability analysis involving the state-dependent delay arising from the
cutting process on the bit-rock interaction. This work revealed two regimes, slow
and fast, of instability with a transition located at a critical angular velocity. In
[27], the RGD model was extended into a more realistic model by considering
axial stiffness and damping of the drill-string but without torsional damping.
The conclusion of the simulation studies in this work is qualitatively the same as
reported in [78] regarding the mechanisms responsible for the onset of torsional
stick-slip vibrations, i.e., it is driven by the axial dynamics (via the regenerative
effect of rock cutting process). Following this finding, this work also suggested
a mechanism for mitigating these torsional vibrations via a stabilization of the
axial dynamics of drill-string system that is inline with the recommendations in
[66, 189]. The latest studies reported in [171, 168, 169, 170] have utilized the
RGD model to investigate the influence of bit design in mitigating the occurrence
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of torsional stick-slip vibrations.

The study [107] has extended the RGD model in [27] by also taking into account
torsional damping on the drill-string dynamics due to the drill mud. The goal of
this study was to investigate the effect of varying drilling operational parameters
(i.e., the angular velocity imposed at surface) on the range of stability for the
coupled axial-torsional motions in the presence of state-dependent delay, which
could be useful for analyzing the effectiveness of an active feedback controller to
suppress torsional stick-slip vibrations. In [108], a higher-dimensional version of
the lumped-parameter model in [107] was proposed. The analysis of this higher-
dimensional model suggested that an increase in the resolution of the spatial
discretization leads to a significant reduction of the stable region and that the
system is prone to self-excited vibrations due to the regenerative effect.

In the work [120], a comprehensive stability analysis on the drill-string model
in [27] extended with torsional damping was conducted in order to develop a
stability chart for deducing the stable operating regime on a drilling operational
parameter-based plane (i.e., in terms of weight-on-bit and top angular velocity at
surface). [119] studied the application of the Galerkin projection scheme to solve
the state-dependent delay (of the rock cutting process) in the drill-string dynamic
model of [120].

Inspired by the study of the global dynamics of the regenerative metal cutting
process in [184], a novel approach was introduced in [80] for the calculation of
depth-of-cut (in the rock cutting process) based on the evolution of a represen-
tative cut surface between two successive (adjacent) cutters. The evolution of
this cut surface is governed by a nonlinear partial differential equation (PDE)
and has been used for the stability analysis of the coupled axial-torsional dynam-
ics of drilling systems [81, 82]. This approach is supported by the fact that the
depth-of-cut formulation in terms of a coupled state-dependent delay differential
equation [147] is only valid for drill-bit motions continuously in contact with the
drilling surface [80].

1.3.2.2 Distributed-parameter models with rate-independent inter-
face laws

The modeling approach of the drilling system in [77] has considered taking into
account the higher (multiple) modes of the axial and torsional dynamics of the
drill-string while also incorporating the rate-independent bit-rock interaction law
of [58, 59] – as an extension of the RGD model. The study [192] has led to
the development of a multiple DOFs model of rotary drilling systems with a
rate-independent interface law and the PDE-based evolution of the cut surface
for estimating the depth-of-cut [80]. This multiple DOFs model was used to
investigate the self-excited axial and torsional vibrations of rotary drilling systems
via linear stability analysis and parametric studies. In this study, it was found
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that the bit-design parameter related to the wearflat plays an important role in
delaying or even suppressing the occurrence of torsional stick-slip oscillations.

In [60, 2], distributed models of drill-string dynamics were rewritten as a sys-
tem of transport equations, and these transport equations were represented as a
transfer function matrix by employing the transmission line model formulation
(the transfer matrix approach). This approach is useful for conducting a local
stability analysis (i.e., around nominal constant axial and torsional velocities).
In [2, 5, 3, 6], this transfer function matrix of distributed drill-string dynamics
was coupled with the transfer function of the linearized rate-independent interface
laws into a feedback representation (i.e., in a block diagram of the full intercon-
nected system) to show the regenerative effect of the bit-rock interaction on the
drill-string dynamics in the Laplace domain. In addition, the stability analysis on
the local dynamics of this interconnected system was performed via the Nyquist
stability criterion.

In [3, 6], the new representation of the depth-of-cut evolution in [80] was con-
sidered, while in [2, 5], the coupled state-dependent delay differential equation in
[147] was used. In [3], time-domain simulation studies for the full coupled dis-
tributed models of drill-string dynamics and rate-independent interface laws were
conducted for analyzing the behavioral characteristics of the non-local dynamics
(limit cycle behavior). This distributed model of drill-string dynamics was also
extended by adding a shock absorber, namely shock sub, to study its effect on
the occurrence of axial and torsional self-excited vibrations via both local and
non-local dynamic analyses [4].

As another distributed-parameter modeling approach, the infinite-dimensional
neutral-type delay (NTD) model that couples the axial and torsional dynamics
of drilling systems with rate-independent interface laws was formulated in [167].
This model takes into account two types of delays related to the wave propaga-
tion speeds along the drill-string (namely the constant input delays and constant
state delays) and the state-dependent delay induced by the bit-rock interaction
following [147]. This model is also used in [69, 166, 70] for the development of mit-
igation strategy on the occurrence of torsional stick-slip vibrations via active state
feedback controllers with an observer-like predictor designed for state estimation.

In [68], the infinite-dimensional NTD model was extended by modifying the esti-
mation of depth-of-cut while taking into account the case of bit bounce and the
bit reverse (backward) rotation. For a worthy comparison with the previous dis-
tributed modeling approaches, a coupled PDE-ODE model is considered in [34],
where the distributed characteristic of the drill-string is coupled with the lumped
BHA section and the state-dependent delay in [147] is used to couple the axial
and torsional dynamics.

Clearly, all these models display a more complex vibrational signature than their
lumped-parameter counterparts. Still, they confirm the same root cause for axial
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and torsional instabilities - that the regenerative effect associated with the rock
cutting process acts as the root cause of these instabilities. All these models, de-
veloped both by lumped-parameter and distributed-parameter (or finite-element
based) approaches, still mostly consider a scenario of drilling vertical boreholes in
homogeneous rock formations – still a simplified abstraction of real operational
conditions in the field.

1.3.3 Modeling and analysis of drilling systems with
downhole regulator

The two degrees-of-freedom (DOFs) lumped-parameter model of the rotary drilling
system (RGDmodel) developed in [147] was extended to incorporate the downhole
regulator AST [182, 181]. The AST model is represented by an internal stiffness
and damping, and a kinematic constraint (induced by its helical spline) that cou-
ples the axial and torsional dynamics of the drill-string. In addition, a lead angle
and spline radius were also introduced in this model to quantify the slope of the
AST spline. These studies successfully revealed the mechanisms of how the AST
improves drilling performance in terms of ROP and efficiency of the rock cutting
process. In more detail, these studies showed that the inclusion of the AST regu-
lator increases the axial instabilities of the drill-string system, particularly at the
bit-rock interaction level. As a consequence, the wearflat (contact) force levels at
the bit (on average) decrease. In turn, this leads to reduced frictional losses at
the bit, thereby leaving more torque available for the rock cutting process at the
bit. This is the key mechanism by which the AST enables improved ROP and
drilling efficiency.

Moreover, the studies [55, 131] have proposed a modification in the internal mod-
eling of AST by considering the effect of internal friction on the helical spline
(e.g., a nonsmooth (frictional) contact and dry friction) and a preload of the in-
ternal spring. The results of parametric studies in these works suggest including
the preload and internal friction of AST for obtaining more accurate dynamic re-
sponses, particularly with the aim of optimizing the tool design to improve drilling
performance.

Again, none of these works considered drilling scenarios with deviated wells, and
all of these works focused on the simplified case of homogeneous rock formations.
Finally, we want to emphasize that none of the works above consider the infinite-
dimensional (distributed) characteristics of drill-string dynamics.

1.4 Open challenges and research objectives
Previous research efforts, reviewed in Section 1.3, have shed light on 1) the root
cause for axial and torsional vibrations in drilling systems (without AST regula-
tor) and 2) the core mechanism by which the AST regulator enables the increase
in drilling performance for vertical boreholes and homogeneous rock formations.
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However, based on the above descriptions of the state of the art, we identify sev-
eral essential open challenges. These open challenges particularly relate to gaining
understanding on whether and, if so, why such drilling performance increases can
also be expected for drilling scenarios closer to real field implementations, as
reported in [158, 140, 141].

In this thesis, we focus on two aspects of real-life drilling scenarios. Firstly, many
wells involve deviated (not vertical) borehole trajectories. Therefore, it is an
open question whether and how the interaction between the borehole and drill-
string in such scenarios affects the potential improvement in drilling performance
that can be gained by the use of the AST regulator in such scenarios. Secondly,
many wells need to be drilled through layered, heterogeneous rock formations.
Again, it is an open question whether and how the varying loading on the bit
when transitioning between distinct rock layers affects the potential improvement
in drilling performance that can be gained by the use of the AST regulator in
such scenarios. Also, the lumped-parameter model of the drill-string, used so
far to analyze the role of the AST [182, 181], is unable to capture the complex,
distributed dynamics of the drill-string. It is, therefore, an open question how such
richer, infinite-dimensional (distributed) drill-string dynamics affect the potential
improvement in drilling performance that can be gained by the use of the AST
regulator.

Summarizing, the main objectives of this thesis can be stated as follows:

1. To extend the dynamic modeling of drilling systems equipped with the AST
downhole regulator toward scenarios involving, firstly, deviated well-bore
trajectories inducing the contact between drill-string and borehole, secondly,
interbedded formations with heterogeneous rock properties, and thirdly, dis-
tributed dynamics of the long, slender drill-string.

2. To perform the dynamic analysis on the effect of such regulator on drilling
performance (in terms of ROP and efficiency in the rock cutting process) by
developing numerical simulators for the models pursued in point 1. Another
objective is to shed light on the core mechanism underlying the way in which
the AST downhole regulator affects the drilling performance in the scenarios
mentioned in point 1.

3. To conduct a parametric study utilizing the extended models and developed
simulators to understand which operational conditions and parametric set-
tings of AST are significant factors in terms of drilling performance.

1.5 Contributions of thesis
The effort made to accomplish the research objectives has led to findings that can
be split into three categories: contributions to the extension of the dynamic mod-
eling of drilling systems equipped with the downhole regulator AST (including
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the development of the associated numerical simulators) for the drilling scenarios
mentioned in Section 1.4, contributions to the dynamic analysis on the effects
of the regulator AST on drilling performance (in terms of ROP and drilling ef-
ficiency), and contributions concerning the parametric study to find the oper-
ational conditions and the settings of AST that significantly affect the drilling
performance.

A more detailed description of the contributions of this thesis is as follows:

1. In Chapter 2, lumped-parameter models of drilling systems without and
with the downhole regulator AST have been developed for drilling in de-
viated well-bore trajectories. A comparative dynamic analysis of these ex-
tended models has been performed utilizing the associated numerical sim-
ulators to investigate (i) the effect of the deviated well-bore (particularly
the contact between the BHA part and the well-bore wall) on the drilling
response and (ii) the effect of the AST on the drilling performance.

2. In Chapter 3, novel bit-rock interface laws are developed for scenarios in
which a PDC bit transitions between two rock layers (e.g., soft and hard
layers of an interbedded formation). These interface laws are a necessary
stepping stone towards dynamic drill-string models for scenarios in which
heterogeneous rock formations are drilled.

3. In Chapter 4, lumped-parameter models of drilling systems without and
with the AST are developed for drilling scenarios in interbedded formation
by taking into account the extended bit-rock interface laws developed in
Chapter 3. A comparative dynamic analysis of these two models is also
performed utilizing the associated numerical simulators to investigate (i)
the effect of the interbedded rock formation on the drilling response and (ii)
the effect of the AST on the drilling performance in such scenario.

4. In Chapter 5, a distributed model of drill-string dynamics equipped with
the regulator AST is developed, including the associated numerical simula-
tor. A comparative analysis of the distributed drill-string models without
and with the regulator AST is performed to investigate the effect of the
AST on the drilling performance under the influence of such distributed
dynamics of the drill-string.

5. In Chapters 2 and 5, a parametric performance study utilizing the ex-
tended models and developed simulators is pursued to investigate the oper-
ational conditions and settings of AST that significantly affect the drilling
performance.

1.6 Publications
The main contributions of this thesis have been published (or based on publica-
tions still in preparation) as the following journal articles and conference papers.
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1.6.1 Peer-reviewed journal articles

Below is a list of of the published journal articles.

• R. Wildemans, A.G. Aribowo, E. Detournay, N. van de Wouw, “Modelling
and dynamic analysis of an anti-stall tool in a drilling system including
spatial friction", Nonlinear Dynamics, Volume 98, Issue number 4, pp. 2631
– 2650, 2019.

• A.G. Aribowo, R. Wildemans, E. Detournay, N. van de Wouw, “Drag
bit/rock interface laws for the transition between two layers", International
Journal of Rock Mechanics and Mining Sciences, Volume 150, Article num-
ber 104980, 2022.

• A.G. Aribowo, R. Wildemans, E. Detournay, N. van de Wouw, “Dynamic
analysis of a downhole regulator for drilling in interbedded formations",
Society of Petroleum Engineers (SPE) Journal, Volume 28, Issue number
04, pp. 1611–1635, Paper number: SPE-214310-PA, 2023.

• A.G. Aribowo, U. J. F. Aarsnes, K. Chen, E. Detournay, N. van de Wouw,
“Analysis of a downhole passive regulator in drilling: a distributed param-
eter modeling approach", to be submitted to the Journal of Sound and
Vibration.

1.6.2 Peer-reviewed papers and abstracts in conferences
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ference (NODYCON 2019), Rome, Italy, 2019.

• A.G. Aribowo, R. Wildemans, E. Detournay, N. van de Wouw, “Dynamic
modeling of drill-string systems for layered rock formations", in Proceedings
of the Fifth International Colloquium on Nonlinear Dynamics and Control
of Deep Drilling Systems, pp. 79-92, University of Maryland, College Park,
United States, 2022.

• A.G. Aribowo, R. Wildemans, E. Detournay, N. van de Wouw, “Non-
smooth dynamics modeling of drill-string systems in heterogeneous forma-
tions", in 10th European Nonlinear Dynamics Conference (ENOC 2022 ),
Lyon, France, 2022.

• A.G. Aribowo, U. J. F. Aarsnes, E. Detournay, N. van de Wouw, N.
Reimers, “Performance analysis of a downhole regulator on rate-of-penetration
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and drilling efficiency: an autonomous load management at bit", in SPE/IADC
International Drilling Conference and Exhibition, Stavanger Forum, Sta-
vanger, Norway, 2023.

• A.G. Aribowo, U. J. F. Aarsnes, K. Chen, E. Detournay, N. van de Wouw,
“Model-based drilling performance analysis of a downhole regulator", in Pro-
ceedings of the Sixth International Colloquium on Nonlinear Dynamics and
Control of Deep Drilling Systems, Universidade Federal do Rio de Janeiro
(UFRJ), Rio de Janeiro, RJ, Brazil, July 1st - 3rd, 2024.

1.6.3 Non peer-reviewed papers and abstracts in
conferences

Below is a list of non peer-reviewed papers and abstracts published and presented
in conferences.

• A.G. Aribowo, R. Wildemans, E. Detournay, N. van de Wouw, “Non-
smooth dynamics modeling of drill-string systems in interbedded forma-
tions", in 40th Benelux Meeting on Systems and Control 2021, Rotterdam,
Netherlands, June 2021.

1.7 Outline
The remainder of this thesis consists of five chapters in total. Each chapter, except
for the last chapter, is based on the published or submitted papers in Section 1.6
and is, thus, self-contained, including more detailed and dedicated descriptions of
the relevant literature.

Chapters 2, 3 and 4 cover the contributions of the thesis to the extension of
lumped-parameter models and dynamic analysis of drill-string dynamics without
and with the AST for the drilling scenarios involving deviated well-bore trajec-
tories and heterogeneous rock formation. Specifically, Chapter 2 focuses on the
model for the drilling scenario of deviated well-bore. Chapters 3 and 4 present
the models related to the drilling scenario of heterogeneous formations. As a step-
ping stone to Chapter 4, in Chapter 3, the extended bit-rock interface laws
involving the transition between two rock layers are presented.

Chapter 5 reports on the distributed model of drill-string dynamics and the
parametric study of the operational conditions and key settings of AST in the
light of drilling performance analysis. In particular, this chapter focuses on the
development of the distributed model of the drill-string equipped with the down-
hole regulator AST, which is used as the basis for the parametric study. Finally,
conclusion and recommendations for future research are presented in Chapter
6.



Chapter 2

Modelling and dynamic analysis of
a down-hole regulator in a drilling
system including spatial friction

Abstract1 - This chapter investigates the effects of a down-hole anti-stall tool (AST)
in deviated wells on the drilling performance of a rotary drilling system. Deviated wells
typically induce frictional contact between the drill-string and the borehole, which affects
the drill-string dynamics. In order to study the influence of such frictional effects on the
effectiveness of the AST in improving the rate-of-penetration and drilling efficiency, a
model-based approach is proposed. A dynamic model with coupled axial and torsional
dynamics of a drilling system including the down-hole tool in an inclined well is con-
structed. Furthermore, the frictional contact between the drill-string and the borehole
is modeled by a set-valued spatial Coulomb friction law affecting both the axial and
torsional dynamics. These dynamics are described by state-dependent delay differen-
tial inclusions. Numerical analysis of this model shows that the rate-of-penetration and
drilling efficiency increases by inclusion of the AST, both in the case with and without
spatial Coulomb friction. Furthermore, a parametric design study of the AST in differ-
ent inclined drilling scenarios is performed. This study reveals a design for the AST,
which gives optimal drilling efficiency, robustly over a broad range of inclined drilling
scenarios.

2.1 Introduction
Drilling is used for the exploration of oil, gas, minerals and increasingly for
geothermal energy. Current drilling operations are challenging as often complex,
deviated wells need to be drilled, for oil and gas exploration, while, for geothermal

1This chapter is based on [187] R. Wildemans, A.G. Aribowo, E. Detournay, N. van de
Wouw, “Modelling and dynamic analysis of an anti-stall tool in a drilling system including
spatial friction", Nonlinear Dynamics, Volume 98, Issue number 4, pp. 2631 – 2650, 2019. The
main findings of this chapter are summarized in [14].
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Figure 2.1: Schematic overview of a drilling system in an inclined well (adapted
from [111]).

applications, drilling into hard rock is required. Improving the efficiency of these
drilling operations will significantly reduce the costs. Particularly in geothermal
drilling operations, where 30−50% of the total development costs are from drilling
[10, 13, 73]. Therefore, the development of new technologies to improve drilling
performance is key to increase the economic feasibility of geothermal drilling op-
erations.

Rotary drilling with PDC bits is widely accepted as most efficient for exploration
and production drilling operations. Figure 2.1 depicts the major components of
a rotary drilling system: rig, drill-string, bottom hole assembly (BHA), including
stabilizers and downhole tools, and drill-bit. In a rotary drilling system, a key
indicator of its efficiency is the ROP, which is the speed at which the bit is
drilling into the sub-surface formation. In order to optimize the ROP, suitable
values of the hook-load, which translates into an axial force on the bit referred



2.1 Introduction 23

to as weight-on-bit (WOB), and rotation speed (RPM) imposed at the surface
(rig) must be set by drilling operators. For this ROP optimization purpose, the
Bourgoyne and Young ROP model is widely used in industry [22, 121]. This model
takes into account different aspects, such as formation strength, WOB, angular
velocity and bit wear, which influence the ROP. Based on the optimal operational
parameters, the ROP is then optimized by using various controllers [20]. However,
the dynamics of the drill-string, the bit– rock interaction and the (frictional)
contact along the drill-string in a deviated well are not taken into account in this
modelling approach. A different approach for ROP improvement is the selection of
drill-string components, such as drill-bits or down-hole tools located at the BHA
of the drill-string [10, 25, 21, 74]. Down-hole tools can be either active [25, 74, 21]
or passive [10, 140, 181]. Active tools typically provide axial excitation during
drilling, which can alter the effect of axial friction and consequently improve the
drilling efficiency. The current chapter aims to model and analyze the effect of
a passive down-hole tool on the drilling efficiency in presence of friction between
the drill-string and borehole wall. This work is motivated by field data that show
evidence that the AST can increase the drilling efficiency in terms of ROP, also
in deviated wells [140, 158].

In particular, this chapter focuses on the modelling and analysis of the coupling
of axial and torsional vibrations in drill-string dynamics, and studies how a down-
hole tool, called the AST [140], affects the drilling performance (in terms of ROP)
in a deviated borehole. Previous works, e.g., [27, 57, 147] have shown that a rate-
independent bit–rock interaction model [58], including both cutting and frictional
contact processes, is essential in the coupling between the axial and torsional
dynamics. In this chapter, we also pursue such type of modelling approach, further
motivated by the fact that the AST also operates by coupling the axial and
torsional dynamics [140, 181]. The dynamics of drill-string systems, including
such rate-independent bit-rock interaction model, has been described by a variety
of dynamical models. In [27, 57, 78, 80, 82, 106, 107, 108, 120, 118, 147] lumped-
parameter models for the axial-torsional drill-string dynamics have been proposed,
while in [2, 5, 60, 77] both finite-element based and distributed models have been
developed. These models have been employed to study instabilities and axial and
torsional vibrations of drill-string systems, and recently to investigate the effect
of the AST on the ROP [181]. However, the effect of friction between the drill-
string and the borehole due to deviated well scenarios has not yet been taken into
account.

The modelling of the frictional contact along the drill-string has been considered
extensively in the scope of so-called torque and drag models [1, 93, 160]. The
magnitude of the frictional forces mainly depends on the normal force acting
between the drill-string and the borehole wall. Hence, in highly deviated wells
the effects of this friction indeed becomes more prominent, because the drill-string
is resting under its own weight on the borehole wall. However, in these models no
vibrational dynamics and down-hole tooling have been taken into account, while
it has been shown that the functioning of the AST is intrinsically related to the
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drill-string dynamics [181].

This work builds on and extends the developments in [181] by modelling and anal-
ysis of the (frictional) contact between the BHA and the borehole wall, thereby
broadening its applicability to deviated well scenarios. The main contributions of
this chapter are as follows:

• Firstly, a benchmark model of the drill-string dynamics (without AST) and
a drill-string model including AST, both with spatial friction between the
borehole and drill-string, are developed. Herein, both unilateral contact and
frictional characteristics of the bit-rock interaction and the spatial friction
between the borehole and drill-string have been modeled by set-valued force
laws. This allows for a unified treatment of these nonlinear model features
in a time-stepping-based simulation tool for the resulting delay differential
inclusion model;

• Secondly, a model-based analysis of the effect of frictional contact between
BHA and borehole wall on the drilling performance (in terms of ROP and
drilling efficiency) is performed;

• Finally, a parametric performance study on the AST design is performed
leading to an optimal design to maintain a high drilling efficiency, which is
robust for a wide range of deviated wells.

The outline of this chapter is as follows. In Section 2.2, the dynamic models of
a drill-string system without and with AST for drilling in a deviated well are
derived. In Section 2.3, a dynamic analysis is performed with a focus on the
effect of the spatial frictional contact on drilling performance (ROP and drilling
efficiency; for both cases without and with AST). Subsequently, a parametric
design study on the AST design is presented in Section 2.4. Finally, conclusions
are drawn in Section 2.5.

2.2 Dynamic modelling
In this section, two models of a drill-string including spatial friction between the
BHA and the borehole are presented. In Section 2.2.1, two drill-string models,
with and without AST, are introduced, enabling the comparative analysis of sys-
tems with and without the AST. In Section 2.2.2, the bit–rock interaction model
is discussed. In Section 2.2.3, the model that describes the frictional contact be-
tween the borehole and the BHA is presented. Finally, in Section 2.2.4 the two
dynamic models, with and without AST, are expressed in dimensionless pertur-
bation coordinates around their nominal solutions in order to identify a minimum
set of parameters characterizing the dynamics.

A total overview of a drilling system in a deviated well is depicted in Figure
2.1. A typical drilling system is operated from the rig located at the surface,
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Figure 2.2: Schematic representation of the benchmark model.

where the top-drive equipment sets the angular speed and adjusts the weight by
regulating the hookload. These operational conditions are transmitted via slender
drill-pipes and a BHA to the drill-bit. The BHA is specifically designed to fulfill a
particular drilling objective(s) based on the subsurface geological conditions and
can be composed by several down-hole components, such as stabilizer(s), rotary
steerable system (RSS), logging tools, mud motor(s), etc. Due to the larger
diameter of the stabilizers compared to the rest of the BHA components, the
stabilizers are in contact with the borehole wall, which consequently results in
additional friction affecting the drill-string dynamics. The physical aspects to be
considered in the modelling are the boundary conditions at the rig, the drill-string
dynamics including the AST, the bit–rock interaction as the down-hole boundary
conditions and the frictional contact between the stabilizers and the borehole.

2.2.1 Drill-string dynamics

In this section, the dynamic models of the drill-string systems are presented. First
the benchmark model, excluding the AST, is discussed. Thereafter, the model
including the AST is discussed.

2.2.1.1 Benchmark drill-string dynamics

In Figure 2.2, the lumped-parameter benchmark model (i.e., without the AST)
is schematically depicted. The axial and torsional dynamics are described by
this model, which consists of two degrees-of-freedom (DOFs), namely the axial
displacement of the bit Ub and the angular displacement of the bit Φb.
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At the rig, the boundary conditions are given by an imposed constant angular
velocity Ω0 and a constant upward force H0, the so-called hookload. The total
mass and inertia of the drill-string including the BHA are lumped in the discrete
mass M and inertia I. The torsional stiffness of the drill-pipes is modelled as a
torsional spring with stiffness Cp. The viscous friction along the drill-string and
BHA in axial and angular directions are characterized by the parameters D and
DΦ, respectively. The parameters λTa and λTt are associated with the spatial
Coulomb friction between the stabilizers and the borehole in axial and torsional
direction, respectively, which is discussed in more detail in Section 2.2.3. The
weight acting on the bit is denoted by W and the torque acting on the bit is
denoted by T .

The bit–rock interaction model, which is discussed in more detail in Section 2.2.2,
relates the weight-on-bit (WOB) W and the torque-on-bit (TOB) T to the axial
and angular motion of the bit. This bit–rock law considers two independent
processes, namely a pure cutting process and a frictional contact. Hence, the force
and torque can be decomposed in a cutting and frictional component, denoted by
the superscripts c and f , respectively, i.e., for the total WOBW = W c+W f , and
for the total TOB T = T c + T f . The force and torque contributions associated
with the wearflat will from now on be denoted as follows:

W f = −λba
, T f = −λbt

. (2.1)

By using a Lagrangian approach, the equations of motion (EOMs) for this model
are obtained. In general, these can be written in the following form:

Mq̈ − h(t,q, q̇) = Wλ, (2.2)

where q represents the column with generalized coordinates. M is the mass matrix
and the column h(t,q, q̇) contains all generalized forces except the friction forces
(both due to frictional contacts at the bit and between the borehole and the
stabilizers at the BHA). The vector λ contains the generalized forces associated
with the set-valued force laws, characterizing both due to frictional contacts at the
bit and between the borehole and the stabilizers at the BHA, see Sections 2.2.2 and
2.2.3, and the matrix W contains the associated generalized force directions. In
case of the benchmark model with the generalized coordinates q =

[
Ub Φb

]>,
this results in the following matrices and columns in Eq. (2.2):

M =
[
M 0
0 I

]
,

h(t,q, q̇) =
[

−DU̇b −H0 +Ws −W c

−DΦΦ̇b + Cp (Ω0t− Φb)− T c
]
, (2.3)

W =
[

1 0 1 0
0 1 0 R

]
,

λ =
[
λba λbt λTa λTt

]>
,

where W c and T c are satisfying Eqs. (2.6), 2.7, and 2.8, and the vector λ is
satisfying Eqs. (2.9), (2.12), and 2.25, and Ws represents the submerged weight
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Figure 2.3: The working principle of the AST: an increase in torque (M2) will
cause a contraction (S) to off-load the weight from the cutters (F2) [10].

of the drill-string. A detailed derivation of the equations of motion can be found
in [186].

2.2.1.2 Drill-string dynamics including AST

The AST is designed to influence the coupling between the axial and torsional
displacement. The AST consists of two tool bodies connected by a helical spline
and an axial internal spring, as viewed in Figure 2.3. According to [158], the
working principle of the tool is that a torsional load with sufficient magnitude to
overcome the compressed spring will make the upper tool body, with the internal
helical spline, rotate on the mating lower body. When the upper and lower part
screw together in this manner, the tool telescopically contracts. Consequently,
this results in an adjustment of the axial and torsional loading acting on the bit.
Hence, the tool prevents dynamic forces from reaching destructive levels.

In Figure 2.4, the lumped-parameter model including AST is schematically de-
picted. The AST separates the drill-string in two parts, where the coordinates
U and Φ are related to the displacements of the top part and Ub and Φb to the
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Figure 2.4: Schematic representation of the drill-string model including the AST.

displacements of the part below the tool. The mass and inertia of the drill-string
including the part of the BHA above the tool are lumped into a discrete mass
Ma and inertia Ia, while the mass and inertia of the part of the BHA below the
tool are lumped into a discrete mass Mb and inertia Ib. The torsional stiffness of
the drill-pipes and the viscous friction components are identical to the benchmark
model. However, the axial viscous friction only acts on the part above the tool
(characterized by the damping parameter D ). The viscous friction in the angular
direction is modelled by two dampers characterized by DΦ and DΦb

. The spatial
friction acts both on the DOFs above the tool and on the DOFs at the bit, and
the distribution of the friction between the two parts of the drill-string is denoted
by ∆ ∈ [0, 1], as introduced in Eqs. (2.22) and (2.23). The radius of the stabilizer
below the tool is assumed to be the same as above the tool.

Let us now introduce the model of the AST, which introduces an additional axial
spring Kb and damper Db, see Figure 2.4. Furthermore, the helical spline in the
tool introduces a kinematic constraint, which is characterized by the lead p, lead
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angle β, and the radius rspline of the helical spline, and can be written as

U − Ub = p

2πrspline
(Φrspline − Φbrspline)

= p

2π (Φ− Φb) =: α (Φ− Φb) . (2.4)

Herein U(Φ) and Ub(Φb) represent the axial (angular) positions above the tool
and at the bit/below the tool, respectively (see Figure 2.4). The lead is given by
p = 2πrspline tan β.

The generalized coordinates of the model including AST are given by qc =[
U Φ Ub Φb

]>. However, due to the kinematic, holonomic constraint of the
AST, this model can be alternatively formulated in terms of three independent
generalized coordinates q =

[
U Ub Φb

]>. This coordinate transformation is
discussed in detail in Appendix A.1. Using a Lagrangian approach for systems
with constraints and after eliminating the DOF Φ, the obtained EOMs can be
written in the general form of Eq. (2.2), with the following matrices and columns:

M =

 Ma + Ia

α2 − Ia

α2
Ia

α

− Ia

α2 Mb + Ia

α2 − Ia

α
Ia

α − Ia

α Ia + Ib

 ,
h(t,q, q̇) =

 −Kb (U − Ub)− 1
αCpY −

1
αDΦẎ −DU̇ · · ·

Kb (U − Ub) + 1
αCpY + 1

αDΦẎ · · ·
−CpY −DΦẎ −DΦb

Φ̇b · · ·

=
· · · −Db

(
U̇ − U̇b

)
+ 1

αCpΩ0t+Ws −H0
· · ·+Db

(
U̇ − U̇b

)
−W c − 1

αCpΩ0t+Wbs

· · · − T c + CpΩ0t

 , (2.5)

W =

 0 0 1 R
α 0 0

1 0 0 −Rα 1 0
0 1 0 R 0 R

 ,
λ =

[
λba

λbt
λTa

λTt
λTba

λTbt

]>
,

with the auxiliary variables Y = Φb + 1
α (U − Ub) and Ẏ = Φ̇b + 1

α

(
U̇ − U̇b

)
in

the expression for h(t,q, q̇), while W c and T c satisfy Eqs. (2.6), 2.7, and 2.8 and
λ satisfies Eqs. (2.9), (2.12), and 2.25. The parameters Ws and Wbs denote the
submerged weights of the drill-string parts above and below the tool, respectively.
A detailed derivation of the equations of motion can be found in [186].

2.2.2 Bit-rock interaction model

In this chapter, the rate-independent bit–rock interaction law as introduced in
[58, 59] is adopted, which relates the WOB and the TOB to the axial and angular
motions of the bit. The bit-rock interaction involves two independent processes:
a pure cutting process taking place at the front of the cutters and a frictional
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contact between the rock and the so-called wearflat underneath the cutters. Ac-
cording to [58, 59], the cutting contributions for a bit consisting of n identical
and symmetrically distributed blades of cutters around the axis of revolution and
a bit radius of a, can be written as

W c = naεζdn, T c = 1
2na

2εdn, (2.6)

where ε is the intrinsic specific energy related to the rock strength and ζ is re-
lated to the orientation of the cutting face. The cutting force and torque are
proportional to the depth-of-cut (DOC) dn produced by a single blade, which is
in general not constant. The DOC depends on the axial position of the bit and
the rock surface generated by the previous blade according to

dn = Ub(t)− Ub(t− tn(t)), (2.7)

where Ub(t) is the axial bit position and t denotes time, see Figure 2.5. Further-
more, tn(t) is the time required for the bit to rotate by an angle of 2π/n, which is
the angle between two successive blades. This time-dependent delay tn(t) (actu-
ally state-dependent) is characterized by the implicit equation:

t∫
t−tn(t)

dΦb(s)
ds ds = Φb(t)− Φb(t− tn(t)) = 2π

n
, (2.8)

where Φb(t) denotes the angular position of the bit at time t.

In the contributions associated with the wearflat as introduced in Eq. (2.1), the
wearflat reaction force λba is essentially discontinuous in terms of the bit axial
velocity. When the bit moves downwards, the contact between the wearflat and
the rock is fully mobilized. However, when the bit moves upwards, the contact
is lost and consequently the reaction force vanishes. Hence, the wearflat reaction
force can be described in a set-valued force law by the following inclusion:

λba
∈ −naσ̄ln

1 + Sign
(
U̇b
)

2 , (2.9)

where σ̄ is the maximum contact stress and ln is the wearflat length per blade.
The axial velocity of the bit is denoted by U̇b and the set-valued sign-function in
Eq. 2.9 is defined as

Sign (y) :=

 1
[−1, 1]
−1

,
y > 0
y = 0
y < 0

, (2.10)

As a consequence of the set-valued nature of the law in Eq. 2.9, the admissible
values of the wearflat reaction force form a convex set Ca given by

Ca = {λba
| −naσ̄ln ≤ λba

≤ 0} . (2.11)
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Figure 2.5: Bottom hole profile between two successive blades [27].

The force acting on the wearflat also induces a frictional torque λbt
. Since the

friction always acts in opposite direction compared to the bit rotational velocity,
this frictional torque is discontinuous with respect to the rotational velocity and
can be modelled by the following inclusion:

λbt ∈
1
2aµξλbaSign

(
Φ̇b
)
. (2.12)

Herein, µ is a rate-independent friction coefficient and ξ characterizes the orien-
tation and spatial distribution of the frictional contact of the surfaces along the
bit blade(s). The angular velocity of the bit is denoted by Φ̇b. The admissi-
ble values of the frictional torque forms a convex set Ct, which depends on the
wearflat(normal) reaction force λba . This set is given by

Ct(λba
) =

{
λbt
| 1

2aµξλba
≤ λbt

≤ −1
2aµξλba

}
. (2.13)

The set-valued force laws for reaction force λba and frictional torque λbt can be
formulated by using normal cones of the convex sets Eqs. (2.11) and (2.13),
respectively [79, 104]:

−U̇b ∈ NCa
(λba

), (2.14)
−Φ̇b ∈ NCt

(λbt
). (2.15)

From convex analysis, these inclusions are equivalent to implicit proximal point
formulations [104]. Hence, these formulations transform the associated inclusions
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into nonlinear implicit equations, which are ultimately used in the (time-stepping-
based) numerical solver which is developed in this work. These read as

λba = proxCa

(
λba − r1U̇b

)
, (2.16)

λbt = proxCt

(
λbt − r2Φ̇b

)
, (2.17)

for r1, r2 > 0 arbitrary, positive constants.

Remarks During a torsional slip phase, the cutting edge is in full contact with
the rock. However, during torsional stick, this contact is not necessarily fully
mobilized, which results in an unknown distribution between torque associated
with cutting and friction in this case. To include torsional stick in the model,
it is assumed that during torsional stick the contact between the cutting edge of
the bit blade and the rock remains fully mobilized. Therefore, this assumption
has conditioned that the cutting component of the model in Eq. 2.6 is only valid
under the conditions of a non-negative angular motion of the bit (Φ̇b ≥ 0) and
with non-negative DOC (dn ≥ 0). Furthermore, a negative DOC is associated
with bouncing of the bit, which indicates total loss of contact between the bit and
the rock. Hence, bit-bouncing is not analyzed in this work.

2.2.3 Spatial Coulomb friction model
In drilling operations in inclined wells, the drill-string rests on the borehole wall
with its own weight, resulting in additional frictional contact between the drill-
string and borehole. This contact is mainly generated by a specific BHA com-
ponent, the stabilizers, due to their larger diameter compared to the rest of the
BHA components (see Figure 2.6). The frictional contact between the drill-string
and borehole has been modelled by torque and drag models [93, 160]. In these
models, the frictional contact forces depend on the normal force and the frictional
coefficient between contact surfaces. In a drilling operation, the drill-string ro-
tates and translates in axial direction. Hence, the sliding velocity of the contact
point has two components, both in axial and tangential direction. Due to this spa-
tial contact, the spatial Coulomb’s friction law involves a two-dimensional force
λT =

[
λTa λTt

]>. In Figure 2.6 a schematic representation of the forces act-
ing on the BHA is depicted. Figure 2.6 also depicts the AST located in between
the top and bottom stabilizer of the BHA. In this case, the normal force FN is
distributed over the two stabilizers. In the benchmark model (excluding AST),
all friction force acts on a single stabilizer, because in the benchmark model both
stabilizers related to the same DOF. Furthermore, homogeneous rock formations
are considered in this study, such that the spatial friction law is assumed to be
isotropic and its force reservoir is represented by a disc. The admissible values of
the spatial Coulomb friction force for a single frictional contact point (i.e., as in
the benchmark model) are given by the convex set CT :

CT =
{
λT ∈ R2 | ‖λT ‖ ≤ µwFN

}
, (2.18)
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Figure 2.6: The BHA resting on its own weight in an inclined well with the axial
(λTa , λTba

) and tangential (λTt , λTbt
, pointing out the plane) components of the

spatial friction acting on the stabilizers and the distributed normal force FN with
distribution ∆.

where µw is the friction coefficient and FN denotes the normal force between the
stabilizer in the BHA and the borehole wall.

Low-order lumped-parameter models for the drill-string dynamics are used in
this study, such that only the gravitational effect (represented by the drill-string
weight) is considered to contribute to the normal force. Thus, the possible force
contributions due to the curvature of the borehole are neglected. Furthermore,
it is assumed that the stabilizers are always in contact with the borehole wall.
However, when the geometrical structure of the borehole is perfectly vertical (Θ =
0°), the spatial friction force vanishes. As the normal force presumptively depends
on the buoyed weight of the BHA and the inclination of the borehole structure
Θ, as depicted in Figure 2.6, this normal force is defined as

FN = BFMBHAg sinΘ, (2.19)

where MBHA denotes the total mass of the BHA, g is the gravitational accelera-
tion, and BF is the buoyancy factor given by

BF = ρ− ρm
ρ

. (2.20)

Herein, ρ is the density of the BHA and ρm is the density of the mud in which
the BHA is submerged below the surface. Hence, the magnitude of the normal
force increases as the borehole inclination (Θ) increases.

In the benchmark model without the tool, the sliding velocity γT at the frictional
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contact between borehole and BHA is given by

γT =
[

U̇b
Φ̇bR

]
, (2.21)

where the first component is associated with the axial and the second with the
tangential velocity component. In this definition, R is the outer radius of the
stabilizers.

In the drill-string model with the AST tool, the BHA is separated in two parts,
such that the spatial friction can act partly above and partly below the tool as
shown in Figure 2.6. Essentially, the normal force FN is distributed between the
two locations, namely above and below the AST. As a consequence, the force
reservoir CT can be segregated into two smaller isotropic reservoirs. In order to
enable the analysis of the cases where all the friction acts only above or below
the tool, a linear distribution parameter ∆ ∈ [0, 1] is introduced. The admissible
friction force reservoirs associated to the friction forces above and below the tool
are, respectively, given by the following convex sets:

CT =
{
λT ∈ R2 | ‖λT ‖ ≤ ∆µwFN

}
, (2.22)

CTb
=
{
λTb
∈ R2 | ‖λTb

‖ ≤ (1−∆)µwFN
}
. (2.23)

The index b denotes the contributions, which are lumped at the bit. Note that
for a straightforward comparison between the model with and without the tool,
the sum of maximal allowable friction forces are equal. When ∆ = 1 holds, the
spatial friction only acts above the AST; when ∆ = 0 holds, all spatial friction
acts below the tool. The corresponding sliding velocities are given by

γT =
[

U̇
Φ̇R

]
, γTb

=
[

U̇b
Φ̇bR

]
. (2.24)

The relation between the sliding velocity and the spatial friction force can be
expressed by the following inclusion, using the normal cone formulation of the
set-valued spatial Coulomb friction law [104]

− γT ∈ NCT
(λT ). (2.25)

This inclusion can equivalently be written as an implicit proximal point formula-
tion:

λT = proxCT
(λT − rγT ) , (2.26)

where r > 0 is an arbitrary positive constant.

2.2.4 Dimensionless perturbation models

The EOMs, given by Eq. (2.2), are scaled in order to reduce the number of
parameters. Furthermore, the dynamics are expressed around its nominal solution
(reflected by a constant angular velocity and ROP) by introducing perturbation
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coordinates. Following [147], a timescale t∗ and a characteristic length L∗ are
introduced, which are defined by

t∗ =
√
Itot
Cp

, L∗ = 2Cp
εa2 , (2.27)

with the total inertia in the benchmark model Itot = I and in the model including
AST Itot = Ia + Ib. Since the total inertia is equal in both models, the timescale
is the same in both models. By using these scaling parameters, the following
dimensionless perturbation coordinates are introduced

u(τ) = U − U0

L∗
, ub(τ) = Ub − Ub0

L∗
, (2.28)

φb(τ) = φb − φb0,

which are functions of the dimensionless time

τ = t

t∗
. (2.29)

These coordinates represent the dimensionless axial and torsional perturbations
with respect to its nominal responses, where the coordinates denoted with sub-
script b are associated with the bit. Explicit expressions for the nominal displace-
ments U0, Ub0, and Φb0 in both models are given in the subsequent sections.

The generalized forces associated with set-valued force laws are scaled by a char-
acteristic cutting force corresponding to a DOC equal to the characteristic length
L∗. This results in the following dimensionless perturbation forces and torque
associated to the set-valued force laws introduced in Sections 2.2.2 and 2.2.3:

λ̂ba = a

2ζCp
(λba − λba0) , λ̂bt = 1

Cp
(λbt − λbt0) ,

λ̂T = a

2ζCp
(λT − λT0) . (2.30)

Note that λ̂T is a column containing the dimensionless axial and tangential com-
ponents of the spatial Coulomb friction. Furthermore, in the model including
the AST tool, the spatial Coulomb friction acting above and below the tool both
satisfy the same dimensionless perturbed form as above for λ̂T . However, the
values of each associated friction forces can be different as these are scaled by
the parameter ∆ in Eqs. (2.22) - (2.23). Furthermore, the nominal values of the
frictional contact component in the bit–rock interaction law are λba0 = −naσ̄ln
and λbt0 = − 1

2na
2µξσ̄ln. Expressions for λT0 for both models are given in the

subsequent sections.

The dimensionless form of the time delay, depth-of-cut and axial and torsional
nominal velocities are given by
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τn = tn
t∗
, δ = d

L∗
,

v0 = V0t∗
L∗

, ω0 = Ω0t∗. (2.31)

The nominal axial velocity V0 (in original coordinates) in both models is given by

V0 = 1
D

(−H0 +Msg − naεζdn0 + λba0 + λTa0) . (2.32)

The nominal DOC d0 and the axial component of the nominal spatial friction
λTa0 are both functions of the nominal velocity V0 and given by

dn0 = V0tn0, (2.33)

λTa0 = − V0

Ω0R

√√√√ µ2
wF

2
N

1 +
(

V0
Ω0R

)2 , (2.34)

with tn0 = 2π/(nΩ0). Substitution of these expressions results in a fourth-order
polynomial in V0, which is monotone for positive values of V0. Hence, Eq. (2.32)
exhibits a unique solution for normal drilling operations (reflected by a positive
nominal axial velocity V0).

Moreover, the dimensionless nominal time delay is defined as τn0 = tn0/t∗ =
2π/(nω0). The dimensionless depth-of-cut (δ) can be expressed in terms of a per-
turbation δ̂ from the nominal depth-of-cut per revolution (δ0 = 2πv0/ω0):

δ = δ̂ + δ0. (2.35)
The dimensionless perturbed DOC δ̂ is given by

δ̂ = n (ub (τ)− ub (τ − τn)) + nv0τ̂n. (2.36)

Note also that the dimensionless perturbed DOC produced by a single blade is
given by δ̂n = (ub (τ)− ub (τ − τn)) + v0τ̂n, such that this relation δ̂ = nδ̂n holds.
Herein, τn is the dimensionless time delay, equal to τn = τ̂n + τn0, where τ̂n is its
perturbation from the nominal time delay τn0. This time delay is obtained with
the implicit delay equation, given in Eq. (2.8), which reads in a dimensionless
formulation:

φb(τ)− φb(τ − τn) + ω0τ̂n = 0. (2.37)

2.2.4.1 Benchmark drill-string model

The column with the dimensionless perturbation coordinates in the benchmark
model is given by z = [ ub φb ]>. In the case of a nominal drilling operation,
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there are no vibrations; thus, the axial and torsional velocities are constant and
positive. Due to the constant velocities, the accelerations are equal to zero. By
substitution of the constant velocities and zero accelerations in the dynamic mod-
els, expressions for the nominal values of the displacements, velocities and forces
are obtained. The nominal values of the axial and angular bit displacement, Ub0
and Φb0 (see Eq. (2.28)), are given by

Ub0 = V0t, (2.38)

Φb0 = Ω0t+ 1
Cp

(
−DΦΩ0 −

1
2na

2εdn0 + λbt0 +RλTt0

)
. (2.39)

The nominal values of the spatial Coulomb friction (λT0 = [ λTa0 λTt0 ]>) are
given by

λTa0 = − V0

Ω0R

√√√√ µ2
wF

2
N

1 +
(

V0
Ω0R

)2 , (2.40)

λTt0 = −
√√√√ µ2

wF
2
N

1 +
(

V0
Ω0R

)2 . (2.41)

The scaling and introduction of the perturbation coordinates lead to the dimen-
sionless EOMs in general form:

M z′′ −H (t, z, z′) = W λ̂. (2.42)
Then, the corresponding matrices and columns in Eq. (2.42) for the benchmark
model are given by

M =
[

1 0
0 1

]
,

H (t, z, z′) =
[

−γu′b − ψδ̂
−γφφ′b − φb − δ̂

]
, (2.43)

W =
[
ψ 0 ψ 0
0 ψ 0 χ

]
,

λ̂ =
[
λ̂ba

λ̂bt
λ̂Ta

λ̂Tt

]>
.

By using the perturbation variables, the proximal point formulations of the set-
valued force laws, given by Eqs. (2.16), (2.17), and (2.26), are transformed into
dimensionless perturbation coordinates. Thereto, the sliding velocity γT , given
for the benchmark model by Eq. 2.21, is written in terms of the dimensionless
perturbation velocities. After performing the substitution of the dimensionless
velocities (see Eq. (2.28) for the dimensionless perturbation coordinates) and
pre-multiplying it with t∗/L∗, the dimensionless sliding velocity is obtained:

ζT =
[

u̇b + v0
r∗
(
φ̇b + ω0

) ] , (2.44)
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where r∗ = R/L∗ is the dimensionless radius of the BHA. Thus, the set-valued
force laws in terms of the dimensionless perturbation variables are given by

λ̂ba
= proxĈa

(
λ̂ba
− r1 (u̇b + v0)

)
, with Ĉa =

{
λ̂ba
| −naσ̄ln ≤ λba

≤ 0
}
,

(2.45)

λ̂bt
= proxĈt

(
λ̂bt
− r2

(
φ̇b + ω0

))
, · · ·

· · · with Ĉt(λ̂ba
) =

{
λ̂bt
| βλ̂ba

≤ λ̂bt
≤ βλ̂ba

+ 2λβ
}
, (2.46)

λ̂T = proxĈT

(
λ̂T − r3ζT

)
, · · ·

· · · with ĈT =
{
λ̂T ∈ R2 |

∥∥∥∥λ̂T + a

2ζCp
λT0

∥∥∥∥ ≤ a

2ζCp
µwFN

}
. (2.47)

The constants r1, r2, r3 > 0 are not necessarily equal in both models.

2.2.4.2 Drill-string model including AST

The column with the dimensionless perturbation coordinates in the model includ-
ing AST is given by z = [ u ub φb ]>. The nominal values of the axial and
angular displacements, U0, Ub0, and Φb0, are given by

U0 = V0t+ 1
αKb

(
1
2na

2εdn0 + αnaεζdn0 +DΦb
Ω0 · · ·

· · · − αMbsg − αλba0 − λbt0 − αλTba0 −RλTbt0) , (2.48)
Ub0 = V0t, (2.49)

Φb0 = 1
αKb

(
−naεζdn0 +Mbsg + 1

α
DΦΩ0 + λba0 + λTba0

)
· · · .

· · ·+
(

1
Cp

+ 1
α2Kb

)(
−1

2na
2εdn0 − (DΦ +DΦb

) Ω0 + λbt0 +RλTbt0

)
· · ·

· · ·+ R

Cp
λTt0 + Ω0t. (2.50)
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The nominal values of the spatial Coulomb friction located above and below the
AST (λT0 = [ λTa0 λTt0 λTba0 λTbt0 ]>) are given by

λTa0 = − V0

Ω0R

√√√√ ∆2µ2
wF

2
N

1 +
(

V0
Ω0R

)2 , (2.51)

λTt0 = −
√√√√ ∆2µ2

wF
2
N

1 +
(

V0
Ω0R

)2 , (2.52)

λTba0 = − V0

Ω0R

√√√√√ (1−∆)2
µ2
wF

2
N

1 +
(

V0
Ω0R

)2 , (2.53)

λTbt0 = −

√√√√√ (1−∆)2
µ2
wF

2
N

1 +
(

V0
Ω0R

)2 . (2.54)

Then, the scaled EOMs in dimensionless perturbation coordinates for the model
including AST can be written in the general form of Eq. (2.42). The correspond-
ing matrices and columns are given by

M =

 m∗ + κι −κι νι
−κι −m∗ + κι+ 1 −νι
κ
ν ι −κν ι 1

 ,
H (t, z, z′) =

 −η2
b (u− ub)− γu′ − γb (u′ − u′b)− νφb · · ·

νφb + κ (u− ub) + νγφ1φ
′
b + κγφ1 (u′ − u′b) · · ·

−φb − κ
ν (u− ub)− γφ1φ

′
b · · ·

· · · − κ (u− ub)− νγφ1φ
′
b − κγφ1 (u′ − u′b)

· · ·+ η2
b (u− ub) + γb (u′ − u′b)− ψδ̂

· · · − γφ1
κ
ν (u′ − u′b)− γφ2φ

′
b − δ̂

 , (2.55)

W =

 0 0 ψ νχ 0 0
ψ 0 0 −νχ ψ 0
0 1 0 χ 0 χ

 ,
λ̂ =

[
λ̂ba

λ̂bt
λ̂Ta

λ̂Tt
λ̂Tba

λ̂Tbt

]>
,

with λ̂ satisfying Eqs. (2.45) – (2.47). The sliding velocities ζT and ζTb
(above

and below the AST, respectively) in Eq. 2.47 are given by

ζT =
[

u̇+ v0
r∗
(
κ
ν (u′ − u′b) + φ̇+ ω0

) ] , ζTb
=
[

u̇b + v0
r∗
(
φ̇b + ω0

) ] . (2.56)

The definitions of the characterizing dimensionless parameters in Eqs. (2.43) and
(2.55) are given in Table 2.1, along with their values used in Section 2.3. The
models presented in this section will now be used to analyze their dynamics, in
particular to study the effect of the AST and spatial frictional on the drilling
performance.
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Table 2.1: Characteristic system parameters.
Parameter Name Symbol Value

Characteristic length L∗ = 2Cp

εa2 7.13× 10−4

Characteristic time t∗ =
√

Itot
Cp

0.45
Mass ratio m∗ = Ma

Mtot
0.92

Inertia ratio ι = Ia
Itot

0.86
Scaled axial damping γ = D

Mtot

√
Itot
Cp

6.43× 10−3

Torsional damping above AST γφ1 = DΦ√
ItotCp

2.05× 10−4

Torsional damping below AST γφ2 = DΦb√
ItotCp

7.39× 10−6

Drill-string design ψ = Itotaεζ
MtotCp

37.5
Arm Coulomb friction force χ = 2ζR

a 0.96
Wearflat friction λ = a2σ̄ln

2ζCp
16.15

Drill bit design β = µξζ 0.81
Inertia mass ratio κ = Itot

α2Mtot
0.56

Scaled lead of AST ν = ακ
L∗

50.64

Scaled axial stiffness of AST ηb =
√

KbItot

MtotCp
2.06

Scaled axial damping of AST γb = Db

Mtot

√
Itot

Cp
0.45

2.3 Drilling performance analysis

In this section, the effect of spatial Coulomb friction on the drilling performance
is investigated. The drilling performance is characterized by the drilling efficiency
and ROP. This chapter focuses on the effect of friction on the drilling performance
under different operational conditions, namely the prescribed angular speed and
the hookload at the surface. The characterizing parameters are introduced in
Section 2.3.1. Next, in Section 2.3.2 the drilling performance of the benchmark
model is investigated. In Section 2.3.3, the drilling performance of the model
including AST is investigated and these results are compared to the benchmark
model in order to investigate the effectiveness of the AST.

2.3.1 Drilling performance variables

From stability analyses of the benchmark model in the absence of spatial Coulomb
friction, it is observed that the nominal solution is typically unstable for realistic
operating conditions [147, 57, 182]. As a consequence, solutions diverge away from
the unstable nominal response and result in a time-varying steady-state response
from the nonlinear dynamics, where the nonlinearities are related to the set-valued
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nonlinearities in the bit-rock interaction law, the set-valued spatial friction law,
and the state-dependent delay effect. The drill-string system exhibits both axial
and torsional vibrations, where the torsional vibrations typically evolve over a
significantly slower timescale compared to the axial vibrations. Since the torsional
vibrations typically converge to a steady-state torsional limit cycle, in this section,
the performance characterization variables are averaged over a torsional limit
cycle.

The performance of a drilling operation is mainly characterized by the drilling effi-
ciency [112]. The drilling efficiency reflects how much of the total torque provided
to the bit is used for cutting.

Remark Note that the torque provided at the bit is in general not equal to the
torque applied at the surface due to frictional losses along the drill-string.

In line with previous studies [147, 181], this efficiency is defined as the ratio be-
tween the energy devoted to the cutting process and the total energy dissipated
at the bit (i.e., by cutting and frictional forces). The average drilling efficiency η
is given by

η = 〈T c〉
〈T c〉+ 〈T f 〉 . (2.57)

Herein T c represents the cutting torque and T f denotes the frictional torque at
the bit. The brackets 〈·〉 denote the average over a torsional limit cycle. However,
the averaged frictional torque at the bit,

〈
T f
〉
, is not directly obtained from the

numerical simulation, since the frictional torque at the wearflat, T f , acts on the
same DOF as the tangential component of the set-valued Coulomb friction force
below the AST, λTbt

(see Eq. (2.3) and Figure 2.2 for the benchmark model and
Eq. (2.5) and Figure 2.4 for the model including AST). Besides, both torques
are governed by a similar set-valued force law, see Eqs. (2.15) and (2.25). As
a consequence, it is not possible to distinguish between the wearflat torque and
the set-valued frictional torque below the AST in numerical simulations with the
model.

Let us now explain how we obtain an accurate measure for the frictional losses
acting at the bit in order to assess the efficiency in Eq. (2.57). According to Eq.
(2.12), the frictional torque at the bit is proportional to the wearflat reaction force
W f with a factor 1

2aµξ. From the model including the tool, as depicted in Figure
2.4, the average of the sum of the wearflat force and the axial set-valued friction
force below the AST,

〈
W f + λTba

〉
, can directly be computed. Since the averaged

axial velocity is much smaller compared to the averaged tangential velocity (i.e.,
〈U̇b〉/〈Φ̇bR〉 = O

(
10−4 − 10−2)), the frictional contact basically only produces a

frictional torque and thus the axial component λTba
is negligible. Hence, the

average wearflat force
〈
W f

〉
is approximated by

〈
W f + λTba

〉
and can be used to

calculate the average frictional torque at the bit
〈
T f
〉
.
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A higher drilling efficiency will result in more efficient drilling and consequently
in saving drilling costs. Moreover, a higher drilling efficiency, as defined in Eq.
(2.57), implies less frictional dissipation at the bit, which is generally favorable
from a bit wear perspective (i.e., longer bit life-time or maintaining bit sharpness).

A control parameter in both models is the hookload H0 at the surface (an upward
force). It can be deduced that an increase in the hook-load is causing a decrease in
the total weight applied to the bit, and this consequently will decrease the ROP.
However, the total weight applied on the bit is not only defined by the hook-
load, but also by the gravitational forces acting on the submerged drill-string.
Therefore, instead of varying the hook-load, the total nominal weight applied on
the bit W0 is varied as a control parameter in the simulations. The total weight
applied on the bit is defined as

W0 = Ws −H0, (2.58)

with Ws the submerged weight of the drill-string.

Remark In general, the WOB depends on the inclination of the well, since
the submerged weight of a drill-string decreases when the inclination increases.
However, it is beyond the scope of this chapter to study how all individual force
components vary with the inclination. Therefore, it is assumed that the hook-load
is adjusted when the inclination changes such that the WOB remains constant.

2.3.2 Drilling performance of the benchmark model

The performance analysis pursued in this section focuses on the axial bit velocity,
because this ultimately determines the ROP. The dynamic models as presented
in Section 2.2 are simulated with a time-stepping-based numerical simulator. The
structure of the numerical simulator is based on [164].

Time-domain responses of the axial bit velocity of the benchmark model with and
without spatial friction between the BHA and the borehole wall are depicted in
Figure 2.7. In both simulations, the same boundary conditions are applied (the
total weight applied on the bit W0 = 171 kN and the angular velocity at the top-
drive Ω0 = 80 RPM). The initial conditions in both simulations are chosen close
to the desired nominal operating conditions (ub(0) = φb(0) = 10−4 and u̇b(0) =
φ̇b(0) = 0), such that the initial perturbations are small with respect to the
nominal solution. Figure 2.7 (a) and (b) show the axial bit velocity without and
with spatial friction, respectively. Both cases show unstable transient behavior
where the oscillations grow until the bit experiences an axial (and a torsional)
stick-slip limit cycle. Furthermore, the transient phase in the case with friction
is longer, i.e., it requires more time to reach the axial (and torsional) limit cycle.
This implies that the friction has a stabilizing effect on the drill-string dynamics,
which reduces the growth rate of the axial (and torsional) vibrations. The spatial
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Figure 2.7: (a) The axial bit velocity for the benchmark model without friction
between the BHA and borehole wall (Θ = 0°) and (b) with the Coulomb friction
(Θ = 90°) (W0 = 171 kN and Ω0 = 80 RPM).

Coulomb friction does not qualitatively change the drill-string system response of
the benchmark model for this specific set of operation conditions.

Next, the effect of the spatial friction is investigated for a broad range of operation
conditions. The range of the nominal WOB (W0) corresponds with the range of
hookload forces of H0 = 370−440 kN. This range is chosen such that lower values
result in bit-bouncing and higher values in a negative nominal axial velocity (see
Eq. (2.32) for the relation between H0 and V0). The range of angular velocities
corresponds with Ω0 = 30−150 RPM. The drilling efficiency η and averaged ROP
for this range of operation conditions are depicted in Figures 2.8, 2.9 and 2.10 for
different inclined scenarios with Θ = 0°, Θ = 45°, and Θ = 90°, respectively.
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Figure 2.8: Drilling performance without and with AST in a vertical well with
inclination angle Θ = 0°. The rate-of-penetration as function of (a) applied WOB
W0 and (b) rotational velocity Ω0 and drilling efficiency as function of (c) applied
WOBW0 and (d) rotational velocity Ω0 (W0 = 171 kN and Ω0 = 80 RPM, unless
parameter is varied).

In Figures 2.8 (a) – (b), 2.9 (a) – (b) and 2.10 (a) – (b), it can be observed
that the ROP increases with increasing nominal WOB and prescribed angular
velocity. An increase in W0, under a prescribed constant angular velocity, results
in an increased ratio between the cutting and frictional forces. Also with faster
rotation (higher values of Ω0) more volume of rock is cut in a given time window.
Furthermore, the spatial Coulomb friction has a small effect on the ROP, implying
that the portion of the total force used for the cutting process is not affected
significantly by the spatial friction between the BHA and borehole.

The drilling efficiency for different operation conditions is shown in Figures 2.8
(c) – (d), 2.9 (c) – (d) and 2.10 (c) – (d). An increase in the nominal WOB results
in a higher drilling efficiency. This indicates that for a higher W0 more energy is
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Figure 2.9: Drilling performance without and with AST in an inclined well with
inclination angle Θ = 45°. The rate-of-penetration as function of (a) applied
WOB W0 and (b) rotational velocity Ω0 and drilling efficiency as function of
(c) applied WOB W0 and (d) rotational velocity Ω0 (W0 = 171 kN and Ω0 =
80 RPM, unless parameter is varied).

used for the cutting process, which is in line with the results in Figures 2.8 (a), 2.9
(a) and 2.10 (a). However, an increasing prescribed angular velocity results in a
decreasing drilling efficiency, which indicates that less energy is used for cutting.
This implies a decrease in DOC. Even with the decrease in DOC, an increased
ROP is still maintained. This consequently happens since with a higher angular
velocity more volume of rock is removed by cutting in a given amount of time.
From these results, it can be concluded that the spatial Coulomb friction mainly
acts in tangential direction.

This is a direct consequence of the large angular velocity compared to the axial
velocity of the drill-string, which results in a sliding velocity (between stabilizer
and borehole) with a relative small axial component compared to the tangential



46 Chapter 2. Drilling systems including spatial friction

1.7 1.8 1.9 2 2.1 2.2 2.3

10
5

2

4

6

8

10

12

10
-3

40 60 80 100 120 140

2

4

6

8

10

12

10
-3

(a) (b)

1.7 1.8 1.9 2 2.1 2.2 2.3

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

40 60 80 100 120 140

0

0.1

0.2

0.3

0.4

0.5

0.6

(c) (d)

Figure 2.10: Drilling performance without and with AST in an inclined well with
inclination angle Θ = 90°. The rate-of-penetration as function of (a) applied
WOB W0 and (b) rotational velocity Ω0 and drilling efficiency as function of
(c) applied WOB W0 and (d) rotational velocity Ω0 (W0 = 171 kN and Ω0 =
80 RPM, unless parameter is varied).

component. Consequently, this is reflected by the ratio between the axial and
tangential components of the spatial Coulomb friction (λT = λTa/λTt), which is
of O

(
10−4 − 10−2). This observation indicates that the spatial Coulomb friction

basically only produces a torsional friction and consequently hardly influences the
axial motion of the bit, as reflected in the ROP observations.

2.3.3 Drilling performance of the model including AST

In this section, we analyze the drilling performance of the system with AST in
the presence of spatial friction between borehole and stabilizers.

Steady-state time-domain responses of the axial bit velocity for the drill-string
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Figure 2.11: (a) The steady-state axial bit velocity for the model including AST
without friction between the BHA and borehole wall (Θ = 0°), (b) with Coulomb
friction (Θ = 90°) acting fully above the AST ∆ = 1, and (c) with Coulomb
friction (Θ = 90°) acting with fully below the AST ∆ = 0 (W0 = 171 kN and
Ω0 = 80 RPM).

model including the AST with and without spatial friction are depicted in Figure
2.11. These responses are obtained with the same boundary conditions as used in
benchmark model (W0 = 171 kN and Ω0 = 80 RPM). The initial conditions are
chosen close to the nominal operating conditions (u(0) = ub(0) = φb(0) = 10−4

and u̇(0) = u̇b(0) = φ̇b(0) = 0). In the absence of spatial Coulomb friction,
the axial vibrations have a larger amplitude compared to the cases with spatial
Coulomb friction. Furthermore, the axial bit velocity exhibits stick-slip transitions
in cases with and without spatial friction. Comparing the response of the model
including AST with response of the benchmark shows a significant difference
between the axial responses. In particular, the amplitude of the axial bit velocity
(U̇b) increases by including the AST up to two times the amplitude of the axial
bit velocity obtained with the benchmark model.
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The drilling performance for a range of operational conditions is depicted in Fig-
ures 2.8, 2.9 and 2.10 for different inclined scenarios with Θ = 0°, Θ = 45°, and
Θ = 90°, respectively. The trends are comparable with the benchmark model,
since the increase of the nominal WOB and prescribed angular velocity result in
an increasing ROP, while the drilling efficiency increases with W0 and decreases
with increasing Ω0. These figures also indicate that the spatial friction hardly
affects the ROP. However, Figure 2.10 shows that it makes a difference if the spa-
tial Coulomb friction fully acts below (∆ = 0) or above (∆ = 1) the AST. In the
simulations, it is observed that the axial vibrations above the tool (U̇) decreases
when the spatial friction acts fully above the tool (∆ = 1). This indicates that
smaller vibrations above the AST have a positive effect on the effectiveness of the
tool, since it results in a slight improvement of ROP. When the friction fully acts
below the tool (∆ = 0), the ROP is slightly lower compared to the case without
spatial friction. Furthermore, the influence of the location where the spatial fric-
tion acts is also observed in the drilling efficiency, which is lower in the case when
all spatial friction acts below the tool. Hence, it can be concluded that the effect
of the spatial friction on the axial vibrations, which are related to the improved
drilling performance, depends on the location where the spatial friction acts. For
various operational conditions (W0 and Ω0), the drilling performance is higher for
the case where all the additional friction acts above the tool. This insight reveals
that it is more beneficial in practice to place the AST closer to the bit, such that
the friction acts mainly above the tool.

A comparison between the ROP and drilling efficiency obtained with the bench-
mark model and with the model including AST shows that incorporating the
AST significantly improves the ROP and the drilling efficiency for a broad range
of spatial friction levels. For example, in the case of a prescribed angular velocity
Ω0 = 80 RPM and a nominal WOB of W0 = 192 kN, the benchmark model re-
sults in the absence of spatial friction in a ROP of

〈
U̇b
〉

= 3.94× 10−3 m/s and a
drilling efficiency η = 0.28, see Figure 2.8. Under the same operational condition,
a ROP of

〈
U̇b
〉

= 6.08 × 10−3 m/s and a drilling efficiency η = 0.37 are obtained
with the model including AST. In this specific case, an increase of more than 50%
in ROP and more than 30% in drilling efficiency is achieved by incorporating the
AST. In the presence of spatial friction, the increase in ROP and drilling efficiency
are comparable.

2.3.4 Discussion

From the performance analysis, it is concluded that the spatial friction hardly
affects the ROP, since the axial component of the friction is relatively small com-
pared to the tangential component. Furthermore, simulation results have revealed
that incorporating the AST in the drill-string results in an improved drilling ef-
ficiency and ROP for a broad range of deviated wells. In case when the spatial
friction acts fully above the AST, a slight improvement of drilling performance is
observed compared to the case without spatial friction and when all friction acts
below the tool.
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2.4 Parametric study of the AST design
Based on the analysis performed in the previous section, incorporating the AST
can provide a solution to improve the drilling efficiency, also in inclined drilling
scenarios with increased frictional contact. From this point of view, the question
arises how to find the optimal tool settings that provide the highest drilling effi-
ciency. A parametric design study is performed in order to investigate the optimal
tool design and to understand whether the optimality of this design is influenced
by the frictional contacts between the BHA and the borehole wall (i.e., whether
optimal tool settings can be found that robustly optimize performance for a broad
range of deviated wells).

In practical field cases, the tool is placed in the bottom part of the BHA [158],
which results in more mass of the BHA above the tool than below the tool. Since
the largest contribution to the spatial friction comes from the heaviest part of the
BHA, all simulations in this section are performed under the assumption that all
spatial Coulomb friction forces fully act above the tool (∆ = 1).

The tool design is mainly reflected by two parameters, namely the lead of the he-
lical spline β and the spring stiffness Kb. In the current design of the AST, a lead
angle of β = 45° and a spring stiffness Kb = 1522.5 kN/m are used. The investi-
gated range of the lead angle is in between β = 10°− 70° and the spring stiffness
range is in between 50 − 11, 133 kN/m. Higher values of spring stiffness results
in bit-bouncing in absence of spatial friction. Two different operational scenar-
ios are investigated, namely with a low angular velocity, where Ω0 = 50 RPM,
and a high angular velocity, where Ω0 = 120 RPM. By considering these two
operation scenarios, it can be investigated if the tool design is robust for different
operational conditions. In all simulations, W0 = 201 kN is used.

From the resulting parametric study, it is observed that a higher spring stiffness
results in a higher frequency of the vibrations induced by the tool contraction.
Furthermore, a smaller value of the lead will result in less contraction at a certain
torsional displacement.

In Figure 2.12, the drilling efficiency is plotted against the lead angle and the
spring stiffness for different well inclination angles with the low angular velocity
case (Ω0 = 50 RPM). The shape of the surfaces characterizing the drilling ef-
ficiency have similar trends for different values of the inclination Θ, indicating
that the influence of the spring stiffness and the lead on the drilling efficiency is
comparable under various levels of spatial Coulomb friction. Figure 2.12 shows
that for various spatial Coulomb frictions, the optimal value for the lead angle β
is around 30°. Since in the current designs a lead angle of 45° is used, between 2%
and 7% in drilling efficiency can be gained by changing the lead angle to 30° in this
specific case with the above-mentioned operational conditions. Furthermore, it is
observed that for lower values of the spring stiffness, the tool provides a higher
drilling efficiency. However, the influence of the spring stiffness is relatively small
compared to the influence of the lead angle.
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(a) Θ = 0° (b) Θ = 45°

(c) Θ = 90°

Figure 2.12: Drilling efficiency for different tool settings at (a) Θ = 0°, (b) Θ =
45°, and (c) Θ = 90° with Ω0 = 50 RPM (the low angular velocity case) and
W0 = 201 kN. The highest drilling efficiency is denoted by the red dots.

In Figure 2.13, the drilling efficiency for the high angular velocity case (Ω0 =
120 RPM) is depicted for various values of the lead angle and spring stiffness and
for different values of inclination Θ. The shapes in these figures are slightly dif-
ferent compared to the low angular velocity case. The dependency of the drilling
efficiency η on the spring stiffness Kb reveals a less clear trend compared to the
low angular velocity case. The optimal lead angle in this case is also around
β = 30°, which is equal to the low angular velocity case. However, it is observed
that in the high angular velocity case the drilling efficiency is less sensitive for an
increase in lead angle compared to the low angular velocity case.

Based on these results, the general conclusion is that the optimal values of the
tool design are robust for different friction levels and a range of angular velocities
imposed at the surface (rig). Hence, an optimal design for the AST that gives
optimal drilling efficiency over a broad range of inclined scenarios is feasible.
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(a) Θ = 0° (b) Θ = 45°

(c) Θ = 90°

Figure 2.13: Drilling efficiency for different tool settings at (a) Θ = 0°, (b) Θ =
45°, and (c) Θ = 90° with Ω0 = 120 RPM (the high angular velocity case) and
W0 = 201 kN. The highest drilling efficiency is denoted by the red dots.

2.5 Conclusions
In this chapter, the effect of a passive down-hole anti-stall tool on the drilling
performance of rotary drilling systems has been investigated for deviated well
scenarios. A model including the coupled axial-torsional drill-string dynamics,
the bit-rock interaction, the tool and the frictional effects of the stabilizers, due
to borehole inclination, has been developed. A set-valued modelling approach for
all contact and frictional effects has been pursued leading to a model in terms of
a delay differential inclusion for which a time-stepping method is employed for
simulation purposes. Numerical analysis results revealed that the down-hole tool
significantly improves drilling efficiency and ROP for a broad range of deviated
wells. Moreover, based on a parametric design study it is concluded that an
optimal tool design, in terms of drilling efficiency, can be found that is robust for
a large range of borehole inclinations and operational conditions.





Chapter 3

Bit/rock interface laws for the
transition between two layers

Abstract1 - This chapter extends bit/rock interface laws for drag (PDC) bits, originally
formulated for homogeneous rocks, to the transition between two rock layers with distinct
mechanical properties. It formulates a set of relations between the weight-on-bit, the
torque-on-bit, the depth-of-cut per bit revolution, and the engagement parameter of the
bit in the lower rock layer. This model enables us to extend the 2D E − S diagram
for the homogeneous case to a 3D E − S diagram for the transitional case, where the
third dimension is related to the engagement parameter. Moreover, this model is used
to derive an expression for the drilling efficiency for the transitional phase. Examples
are provided for describing the 3D E − S diagram and drilling efficiency under the
condition of quasi-stationary drilling (i.e., constant angular velocity, constant weight-
on-bit). These examples show that the drilling efficiency depends nonlinearly on the bit
engagement between the two rock layers. This intrinsic dependency is closely related to
the bit shape.

3.1 Introduction
Exploration and production activities for the discovery and extraction of hydro-
carbon and geothermal energy resources require to drill deep (even ultra-deep-
water) well-bores into the targeted reservoir zones in the earth’s crust where the
resources are accumulated. Down-hole, self-excited vibrations are omnipresent
phenomena when performing these drilling operations, which are typically done by
rotary drilling systems equipped with Polycrystalline-Diamond-Compact (PDC)
bits as sketched in Figure 3.1. PDC bits (also known as a class-type of fixed cutter

1This chapter is based on: [17] A.G. Aribowo, R. Wildemans, E. Detournay, N. van de
Wouw, “Drag bit/rock interface laws for the transition between two layers", International Jour-
nal of Rock Mechanics and Mining Sciences, Volume 150, Article number 104980, 2022. Related
preliminary results are reported in [18].

53
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Bit
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Ω0H0

Figure 3.1: Schematic overview of a rotary drilling system with a PDC bit in
drilling a vertical well-bore during a transitional phase between two rock layers.

Figure 3.2: PDC bit (after [162]).

or drag bits) consist of several bit blades on which the PDC cutters are attached
(see Figure 3.2).

The vibrations at the bit are primarily caused by the interaction between the bit
and the rock formation [190, 54, 76]. In addition, the bit experiences transient
vibrations when transitioning between two distinct layers [87, 26, 63]. Such drilling
conditions can lead to fast changes in the weight-on-bit (WOB) and torque-on-bit
(TOB) arising from the bit/rock interaction, and consequently affect the total
dynamics of the drill-string system. These rapid load changes on the bit may lead
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to bit damage and drilling in interbedding formations may significantly affect
drilling efficiency [38, 31, 113, 9]. These observations motivate the development
of a bit/rock interaction model for PDC bits transitioning between two layers.

The interface laws, originally introduced in [58, 59, 194] to describe the interaction
between the rock and bit, have been used to analyze the response of drilling
systems with PDC bits in homogeneous formations. In [147, 78, 27, 57, 107], these
interface laws are utilized in the modeling and dynamic analyses of drill-string
systems to explain the root-cause of the vibrations for drilling scenarios with PDC
bits in homogeneous rock formations. The interface laws, being parameterized by
the rock mechanical properties and the bit-design properties, couple the axial
and torsional dynamics of the drill-string through both the regenerative effect
(well-known in the scope of chatter phenomenon in the milling process [89]) and
frictional contact. However, such interface laws for the case of the bit transitioning
between two distinct rock layers are still missing in the literature.

The main contributions of this chapter are as follows:

• Firstly, we extend the bit/rock interface laws for homogeneous formations to
the transition between two layers (e.g., soft and hard layers of an interbedded
formation as sketched in Figure 3.1). Specifically, we derive a set of relations
between the dynamic variables (the WOBW , the TOB T ) and the kinematic
variable d for the depth-of-cut (DOC) produced per bit revolution and the
evolution parameter U for the bit engagement in the associated lower layer
during the transition. Parameter U represents how deep the bit has entered
the lower layer.

• Secondly, by using this novel model, we extend the 2D E − S diagram
(with E being the mechanical-specific-energy (MSE) and S being the drilling
strength) for the homogeneous case to 3D E−S diagrams for the transitional
case, where the third dimension is related to the engagement parameter U .

• Finally, this model is used to find an analytical expression for the drilling
efficiency for the transitional case.

The chapter is organized as follows. Section 3.2 summarizes the foundational
formulation of the interface laws for the transitional phase, which consist of two
components: (i) cutting and (ii) frictional contact. In Section 3.3, the dynamic
variables in these components are explicitly formulated as function of the depth-
of-cut and parameterized by the bit characteristics and the rock properties asso-
ciated to the layer(s) with which the bit currently engages. Section 3.4 presents
the extension of the E − S diagram and of the drilling efficiency for the transi-
tional phase. In Section 3.5, the MSE and the drilling efficiency are numerically
investigated within a scenario of the transitional phase. Furthermore, the effect
of the bit shape on the drilling efficiency is also explored. Finally, Section 3.6
draws conclusions.
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3.2 Problem formulation
In this section, we formulate the foundations over which the interface laws are
extended for the transitional phase between two rock layers. We recall some well-
established concepts related to bit/rock interaction in isotropic-homogeneous rock
formations. We also introduce some novel parameters related to the transitional
phase that will be used in extending the interface laws.

3.2.1 Rate-independent interface laws and penetration per
revolution of the bit

We consider the normal mode of bit/rock interaction, where the bit is drilling
straight ahead. The response model of drilling with drag bits in this normal
mode consists of a set of relations between the weight-on-bit W , the torque-on-
bit T , the rate of penetration (ROP) V , and the angular velocity Ω [59, 194].
In this work, we use the coordinate basis (ix, iy, iz) of the PDC bit system (see
Figure 3.3). The iz-axis coincides with the bit axis of symmetry while pointing
ahead of the bit and the origin is selected at the reference point of the bit (located
at the lowest point on the bit profile). The coordinate basis of the bit system can
also be represented in the cylindrical coordinate basis (ir, iω, iz) as depicted in
Figure 3.3.

The rate-independent bit/rock interface laws relate these dynamic variables (W ,
T ) to the kinematic variable d. During the transitional phase between two rock
layers, the extension of these interface laws are formulated to be parameterized
by the bit engagement U in the lower layer (as the evolution parameter), such
that

W = W̃ (d;U), T = T̃ (d;U). (3.1)

These functions W̃ , T̃ in Eq. (3.1) are averaged over at least one revolution of the
bit. The relations are assumed to be rate-independent, as supported by experi-
mental evidence from laboratory single cutter and drilling tests conducted under
kinematic control [56, 127, 75, 142]. The kinematic variable d can also be under-
stood as the penetration per revolution of the bit, which represents the advance
of the bit in the iz direction; see Figure 3.4. On the other hand, the parameter
U determines the portion of the bit engaged in the lower layer during the transi-
tional phase (to be detailed in Section 3.2.5). Herein, we assume quasi-stationary
drilling conditions where the total WOB and the angular velocity (RPM) of the
bit are constant.

3.2.2 Equivalent blade concept
The concept of equivalent blade introduced in [137, 194] is adopted to simplify the
description of the interaction of the bit with the rock. To illustrate this concept,
first we consider that all PDC cutters mounted along a bit blade on the bit body
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Figure 3.3: The coordinate basis for the PDC bit and an illustration of equivalent
blade for a parabolic bit shape.
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Figure 3.4: The penetration (kinematic) variable d (after [137]).

are as the outer (cutting) edge of the bit defined by a two-dimensional curve C
(red line) illustrated in Figure 3.3. Then let us imagine that as this curve C fully
rotates about the axis iz (without the bit advancing), the cutting profile surface
(i.e., S or S ′ as illustrated in Figure 3.4) generated by the bit can be equivalently
replaced by a rotation of the blade depicted in Figure 3.3. Therefore, this curve
describes the geometry of the bit equivalent blade and thus the bit shape.

In order to connect the concept of penetration per revolution and equivalent
blade, we note that in the nominal case (steady drilling condition) the kine-
matic variable d0 (produced per bit revolution in the time period t0 = 2π/Ω0

with a nominal RPM Ω0) is also the instantaneous depth-of-cut produced by
the equivalent blade. Trivially, the rate of volume of rock excavated is equal to
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Q0 = Ω0d0
a∫
0
rdr = 1

2a
2d0Ω0, and hence the total excavated rock volume rate

per revolution is δV0 = t0Q0 = πa2d0. If the interface laws are indeed rate-
independent, the instantaneous depth-of-cut d associated with the rotation of the
bit equivalent blade is the only kinematic variable needed. The laws account for
the effect of bit shape (to represent all contributions of the orientations of PDC
cutters on the bit).

3.2.3 Bit profile

A PDC bit is characterized by its height b and its radius a. A radial coordinate
R is the radial distance of a point located along the curve of the blade profile
from the bit axis of symmetry (i.e., 0 ≤ R ≤ a), while an axial coordinate Z is
on the bit axis of symmetry with its origin at the lowest point on the bit (i.e.,
0 ≤ Z ≤ b); see Figure 3.3. The function

z := f (r) (3.2)

characterizes the bit profile (shape). This function maps the axial coordinate
z = Z/a on the radial coordinate r = R/a. In this work, we consider a parabolic
bit shape function f(r) as an illustrative example; see Figure 3.3. However, these
extended bit/rock interface laws are valid for a generic class of bit shapes, where
we restrict the formulation of the interface laws to bit profiles with f ′(r) = df/dr >
0, for 0 ≤ r ≤ 1. Note that if the bit has a re-entrant (nose) shape (for which f(·)
is not invertible), the values of r can be multi-valued.

3.2.4 Local penetration

By reference to Figure 3.4, let P be a point on the bit cutting profile S, and P ′
the point on the cutting profile S ′ produced after the axial translation d by the
rotation of the cutting edge curve C. The local penetration variable p is then
defined as the projection of vector

−−→
PP ′ onto n̂, and equal to

p = d cosα, (3.3)

where α is the angle between the external normal direction n̂ of the curve C and
the direction iz (see Figure 3.3), i.e., tanα = df/dr. Hence we have

cosα = 1√
(f ′(r))2 + 1

. (3.4)

The local penetration p varies along the cutting profile of the blade due to the
effect of the bit shape (i.e., the profile function f(r)). Consequently, each ele-
mentary part of the equivalent blade only considers this local depth produced per
revolution (in the view of local symmetry between the rotational axis of the bit
iz and the normal direction n̂ of the cutting profiles).
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Figure 3.5: The PDC bit systems during the transitional phase and the bit en-
gagement.

3.2.5 Bit Engagement

We introduce an engagement parameter U that identifies the bit portion being
engaged in the lower layer (as depicted in Figure 3.5) and acts as the evolution
parameter for the weight and torque during the transitional phase. The dimen-
sionless engagement parameter u ∈ [0, b/a] is also introduced and is related to the
parameter U scaled by the bit radius a:

u = U

a
, for 0 ≤ U ≤ b. (3.5)

In its initial position, the bit is assumed to be fully engaged in the upper layer
(i.e., u = 0) with its reference point located on the interface between the two
layers. We also assume that the layer thickness H ≥ b, which implies that the bit
is at most engaging in these two consecutive layers during the transitional phase.

An alternative evolution parameter, Q ∈ [0, a], is also considered. It is defined as
the radial coordinate R of the point on the blade profile located at the interface,
see Figure 3.5. We consider its dimensionless form, q = Q/a, and use Eq. (3.2)
to relate it with u in Eq. (3.5) according to

u = f(q), for 0 ≤ q ≤ 1. (3.6)

Parameter q is used to identify which part of the bit is engaged in the upper and
lower rock layers, and can also be expressed uniquely in terms of u due to the
invertibility of f(·) (due to its monotonicity): q = f−1(u), for 0 ≤ u ≤ b/a.
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Figure 3.6: A blunt single PDC cutter (after [58, 59]).

3.2.6 Parameters of the cutter/rock interface laws

Previous works in [58, 59] have identified the cutter/rock properties that enter
the interface laws when drilling isotropic-homogeneous rock formations (Figure
3.6). Firstly, the cutting component is parameterized by: (i) the intrinsic specific
energy ε (in the unit of pressure), and (ii) the constant number ζ, characterizing
the inclination of the cutting force. Secondly, the frictional contact component is
parameterized by: (i) the coefficient of the friction µ (at the contact between the
wear flat and rock), (ii) the maximum contact pressure σ at the wear flat interface,
and (iii) the wear flat length ` that describes its state of wear (bluntness) of the
cutter.

3.3 Bit/rock interface laws in the transitional
phase

In this section, the interface laws in [58, 59, 194] will be extended to the transi-
tional phase by relating the WOB and TOB to the depth-of-cut. Herein, we take
into account the bit design properties, the state of wear (bluntness) of the bit,
the mechanical properties of the rocks being drilled, and the evolution of the bit
engagement in the two layers depicted in Figure 3.5. In this extension, the upper
and lower layers are characterized by their own distinct mechanical properties
denoted by the subscripts u and l, respectively, i.e., εu, µu, σu for the upper layer
and εl, µl, σl for the lower one.

3.3.1 Cutting component

Consider the length L of the equivalent blade and its length element dL as depicted
in Figure 3.7 (the yellow-gold color; top-right). Note also that κ = L/a as the
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Figure 3.7: Cutting and friction components of the weight-on-bit and torque-on-
bit.

scaled length of the blade on the curvilinear coordinate s with respect to the bit
profile (in dimensionless). The cutting force acting on this element dL is fcdL,
where fc is the force density with dimension [Force/Length]. This force density
can be decomposed into the horizontal component fcs (along the surface) and the
normal component fcn, i.e., fc = −fcsiω + fcnn̂; refer to the side view in Figure
3.7. Herein, the torque on bit contributed by the cutting process is generated by
the horizontal component, for which its magnitude fcs is given by

fcs = εp. (3.7)

Note that p is the local depth of penetration as described in Eq. (3.3). By con-
sidering the relation dR = dL cosα (equivalently dr = ds cosα in dimensionless),
the torque (contributed by this horizontal force density) can be expressed by the
following integration over the radial coordinate on the bit

Tc = a2
κ∫

0

εpr ds = a2
1∫

0

εdr dr = a2

2 εd. (3.8)

In the transitional phase, the integration process in Eq. (3.8) must take into ac-
count the bit engagement in the upper and lower layers, since the intrinsic specific
energy ε differs for the two layers. Consequently, this integration is performed for
adjusted intervals (i.e., for r ∈ [0, q] for the lower layer and for r ∈ [q, 1] for the
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upper layer), which yields

Tc = Tuc + T lc = a2

2 d
(
εu
(
1− q2)+ εlq

2) . (3.9)

Next, for the cutting contribution to the weight-on-bit, we focus on the force
density fcn as depicted in the front and side views in Figure 3.7. The vertical
component of force density with magnitude fcn cosα can be integrated over the
length element ds on the equivalent blade to yield the WOB due to the cutting
process

Wc = a

κ∫
0

ζεpcosα ds = aζd

1∫
0

ε cosαdr = aεdζ∗. (3.10)

We define the nominal bit design parameter for the cutting component: ζ∗ := ζ ϑζ
with

ϑζ :=
1∫

0

1√
(f ′ (r))2 + 1

dr, (3.11)

as we recall Eq. (3.4) to explicitly combine the orientation of the local cutting
force and the bit profile function f(r) which both affect the WOB. As for the
torque, the integral is split in two parts to account for the different properties of
the two rock layers, which gives

Wc = Wu
c +W l

c = adζ

εu 1∫
q

cosαdr + εl

q∫
0

cosαdr

 . (3.12)

Similarly, from Eqs. (3.12) and (3.4) we define the bit design parameters for both
upper and lower layers (ϑuζ (q) and ϑlζ (q), respectively) as follows:

ϑuζ (q) := 1
ϑζ

1∫
q

1√
(f ′ (r))2 + 1

dr, ϑlζ(q) := 1
ϑζ

q∫
0

1√
(f ′ (r))2 + 1

dr, (3.13)

such that ϑuζ (q) + ϑlζ (q) = 1. By using Eqs. (3.11) and (3.13) in combination
with Eq. (3.4), Wc in Eq. (3.12) can be rewritten as

Wc = a ζ∗ d
(
εu
(
1− ϑlζ

)
+ εl ϑ

l
ζ

)
. (3.14)
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3.3.2 Frictional contact component

Consider an element of wear flat on the equivalent blade in Figure 3.7 with the
length element dL (e.g., the green color; bottom-right) for calculating the fric-
tional components of the weight-on-bit and torque-on-bit. Due to the contact
stress σ applied on the wear flat element in the normal direction n̂, the force
density ffn generates the weight-on-bit. This normal force density has magnitude

ffn = σλ. (3.15)

In addition, the frictional force density ffs in the horizontal direction (along the
surface) generates to the torque-on-bit, and its has magnitude ffs = µffn. Note
that λ is the radial distribution of the wear flat length produced by each cutter on
the blade. As we assume λ a uniform radial distribution of the wear flat length,
the combined wear flat length on the contact surface of the equivalent blade is

equal to ` in the horizontal direction of the blade (i.e., ` =
1∫
0
λ (r) dr = λ).

Herein, the weight acting on the bit due to the frictional contact is calculated
along the blade length L using the curvilinear coordinate s with respect to the bit
profile. By considering the scaled length κ = L/a and the relation dr = ds cosα,
this frictional component of WOB can be written as the integral of the force
density ffw = ffncosα with the radial coordinate r in the interval r ∈ [0, 1]:

Wf = a

κ∫
0

σλcosαds = aσ

1∫
0

λdr = aσ`. (3.16)

In the transitional phase, again the integration interval in Eq. (3.16) is adjusted
using the coordinate q, and thus the associated rock parameters for the upper
and lower layers are used. This leads to

Wf = Wu
f +W l

f = a ` (σu (1− q) + σlq) . (3.17)

Furthermore, the frictional force density with magnitude ffs (using a Coulomb
friction model) contributes to the torque that can be written in the following
integral with the coordinate r in the same interval:

Tf = a2
κ∫

0

µσλr ds = a2µσ

1∫
0

λr

cosα dr = a2

2 µσ`ξ, (3.18)

as we consider a uniform radial distribution of the wear flat length (λ = `). We
define the nominal bit parameter for the frictional contact (by recalling from Eq.
(3.4) that secα =

√
(f ′(r))2 + 1):

ξ := 2
1∫

0

r

√
(f ′ (r))2 + 1 dr, (3.19)
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which is associated to the orientation of the contact force on the wear flat with
respect to the bit shape f(r).

In the transitional phase, we again adapt the interval of the integration in Eq.
(3.18) for the torque with the coordinate q and use the associated rock parameters.
This gives

Tf = Tuf + T lf = a2`

µuσu 1∫
q

r

cos αdr + µlσl

q∫
0

r

cos αdr

 . (3.20)

Similar to the cutting component, we also define the bit parameters of the fric-
tional component for both upper and lower layers (ϑuξ (q) and ϑlξ (q), respectively)
as follows:

ϑuξ (q) := 2
ξ

1∫
q

r

√
(f ′ (r))2 + 1 dr, ϑlξ(q) := 2

ξ

q∫
0

r

√
(f ′ (r))2 + 1 dr, (3.21)

such that ϑuξ (q) + ϑlξ(q) = 1 holds. Hence, by also considering the following
relation obtained from Eq. (3.17):

a ` = Wf

(σu (1− q) + σl q)
, (3.22)

the torque in Eq. (3.20) can be rewritten in terms of the weight Wf ,

Tf =
(µu σu (1− ϑlξ) + µl σl ϑ

l
ξ) a ξ

2 (σu (1− q) + σl q)
Wf . (3.23)

Summarizing, Eqs. (3.9), (3.14), (3.17) and (3.23) represent the bit/rock interface
laws, which map the depth-of-cut d to the weight-on-bit and torque-on-bit and
also evolve with parameter q during the transitional phase.

3.4 E − S diagram and drilling efficiency in the
transitional phase for quasi-stationary
drilling

In this section, the bit/rock interface laws derived for the transitional case are
used to extend the E − S diagram and to derive expressions for the drilling
efficiency. Under the assumed quasi-stationary drilling conditions, the weight-on-
bitW applied by the BHA is in equilibrium with the reaction force resulting from
the interaction of the cutters with the rock, i.e., W = Wc + Wf ,where Wc and
Wf are given in Eqs. (3.14) and (3.17), respectively. Hence,

W = a ζ ϑζ
(
εu
(
1− ϑlζ

)
+ εl ϑ

l
ζ

)
d+ a l (σu (1− q) + σlq) . (3.24)
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Figure 3.8: E − S diagram for a given value of the bit engagement parameter u
under the variations of hook-load H0 (determining the total weight-on-bit).

Solving (3.24) for the penetration variable d yields

d = (W − a l (σu (1− q) + σlq))
a ζ ϑζ

(
εu

(
1− ϑlζ

)
+ εl ϑlζ

) . (3.25)

Here, we see that the kinematic variable d is a continuous function of the engage-
ment u via the parameter q according to Eq. (3.6).

3.4.1 E − S Diagram for the transitional phase

Mechanical-specific-energy (MSE) E is the quantity (in the unit of pressure) repre-
senting the amount of energy dissipated to drill a unit volume of rock. It accounts
for both the work spent to fragment (cut) the rock and for frictional dissipation,
and is defined as follows:

E := 2T
a2d

, (3.26)

with the total TOB T = Tc + Tf , where Tc and Tf are given in Eqs. (3.9) and
(3.23), respectively. Drilling strength S is defined as the quantity (in the unit of
pressure) that reflects the axial force imposed on the PDC bit for producing the
penetration variable d:

S := W

ad
. (3.27)

By noting the relation between the torque Tf and the weightWf in Eq. (3.23), the



66 Chapter 3. Bit/rock interface laws for the transition between two layers

definition of MSE E in Eq. (3.26) can be rewritten in terms of drilling strength
S with respect to the bit engagement u (or equivalently q = f−1(u)) as follows:

E =
(
Gcq − βnomµlG

f
ξG

c
ζ

)
εl + µl ξ G

f
ξ S, (3.28)

with the following definitions:

Gcq :=
(
gε
(
1− q2)+ q2) , Gfξ :=

(gµ gσ (1− ϑlξ) + ϑlξ)
(gσ (1− q) + q) ,

Gcζ :=
(
gε
(
1− ϑlζ

)
+ ϑlζ

)
, βnom := ξ ζ∗. (3.29)

Here, we define the ratio of the associated rock mechanical parameters in the
cutting and frictional contact components of the interface laws for two distinct
rock layers as follows:

gε := εu
εl
, gµ := µu

µl
, gσ := σu

σl
. (3.30)

This analytical expression of MSE characterizes the friction line illustrated in
Figure 3.8 for a particular value of parameter u; this is what we call the 2D E−S
diagram. Visualizing the dependency of E and S on u will lead to a 3D E − S
diagram, and an example will be presented in Section 3.5.

3.4.1.1 Cutting point

An ideally sharp bit blade (characterized by a wear flat length ` ≈ 0) is represented
by the so-called cutting point in the E − S diagram (the left-most point on the
friction line in Figure 3.8). At the cutting point, all the energy received by
the bit is entirely used for the cutting process without any frictional dissipation
(Wf = Tf = 0). For Wf = 0, the nominal value of depth-of-cut in Eq. (3.25) at
the cutting point becomes

dcp = W

aζ ϑζ

(
εu

(
1− ϑlζ

)
+ εl ϑlζ

) . (3.31)

For the cutting point, the MSE E and drilling strength S can be expressed as

Ecp = 2Tc
a2dcp

=
(
εu
(
1− q2)+ εl q

2) , (3.32)

Scp = Wc

adcp
= ζ∗

(
εu
(
1− ϑlζ

)
+ εl ϑ

l
ζ

)
, (3.33)

with the nominal bit parameter of the cutting component ζ∗ = ζ ϑζ ; see in Eq.
(3.11). This cutting point is also explicitly depicted in Figure 3.8 and depends on
the parameter u.
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Table 3.1: Bit and rock mechanical properties for soft and hard layers.
Parameter Name Soft Layer Hard Layer Unit
Intrinsic specific energy (ε) 100 200 MPa
Contact pressure (σ) 100 200 MPa
Friction coefficient (µ) 0.5 1.0 [–]
Bit height (b) 22.2 22.2 cm
Bit radius (a) 10.8 10.8 cm

3.4.2 Drilling efficiency
The drilling efficiency is defined as the ratio between the intrinsic specific energy
of the associated rock layer and the apparent specific energy [58, 59], represented
by the MSE E. Thus for the transitional phase considered here, we refer to Eq.
(3.32) for the intrinsic specific energy of the two rock layers and Eq. (3.28) for
the MSE E. Hence, the drilling efficiency during the transitional phase is given
by

η(q) = Ecp
E

=
(
εu
(
1− q2)+ εlq

2)(
Gcq − βnom µlG

f
ξ G

c
ζ

)
εl + µl ξ G

f
ξ S

. (3.34)

The drilling efficiency evolves during the transitional phase in view of the depen-
dence of q on the engagement u.

3.5 Illustrative case study and analysis
Next, we illustrate the E − S diagram and the drilling efficiency during the tran-
sition of the bit between two rock layers.

3.5.1 E − S diagram for the transitional phase: a
transition from soft to hard layers

During the transitional phase, E and S depend on the bit engagement parameter
u ∈ [0, b/a]. For the illustrative case study presented below, we consider the rock
mechanical properties and the physical characteristics of the drag bit listed in
Table 3.1. A parabolic bit is considered, with f(r) = Azr

2, where Az is a positive
constant.

Figure 3.9 illustrates the evolution of MSE E in terms of drilling strength S as
the bit transitions from a soft to a hard layers. Specifically, this 3D E–S diagram
is depicted as a friction surface that maps all possible 2D friction lines for each
bit engagement progression u into the lower layer (i.e., the dashed lines for fixed
values of u). As such, this 3-D E–S diagram constrains all the possible states of
the bit response irrespective of the WOB and the wear state of the bit.

For this particular example, the friction lines for several selected bit engagement u
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Figure 3.9: 3D E − S diagram under the variations of weight W applied at the
top side of PDC bit during the transitional phase from a soft-upper layer (green-
square) to a hard-lower layer (blue-square).

values are depicted in dashed-gray lines. The solid lines characterize the transition
from the soft-upper layer (u = 0 in green-square) to the hard-lower layer (u = b/a
in blue-square) for a constant weight W applied to the PDC bit. The green and
blue squares represent the 2D friction lines for the homogeneous cases when the
bit is fully engaged in the soft and hard rock layers, respectively. Increasing the
weight W moves the solid lines close to the red cutting line (reflecting the ideal -
no dissipation condition). The cutting points also evolve during the transition as
a cutting line indicated by the red solid line and only dependent on the bit/rock
parameters – conforming Eq. (3.32) for Ecp and Eq. (3.33) for Scp.

Figure 3.10 shows the 2D projections of the 3D E–S diagram (in Figure 3.9) based
on several selected values of u. The dashed lines show the friction lines for each
u; see also the analytical sketch in Figure 3.8. In addition, Figure 3.11 shows the
2D projection (in solid gray lines) of the 3D E−S diagram for each constant level
of the applied weight W , when the bit traverses the interface from the soft-upper
layer to the hard-lower one. An important observation on the basis of Figures 3.9
and 3.11 is that the bit is constrained to nonlinear curves in E − S space during
the transition at a constant weight-on-bit.

3.5.2 Drilling efficiency in transitional phase

Now we illustrate the variation of drilling efficiency given by Eq. (3.34) in a
soft-to-hard layers transition. As shown in Figure 3.12, the drilling efficiency
increases with the increasing applied weight W , and these efficiency lines move
closer to an efficiency η = 1 (the red cutting line) in which no frictional contact
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Figure 3.10: 2D projection for the selected values of u (of 3D E − S diagram) for
the transitional phase of bit motion from the soft-upper layer (green-square) to
the hard-lower layer (blue-square).
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Figure 3.11: 2D projection based on the variations of W (of 3D E − S diagram)
for the transitional phase of bit motion from the soft-upper layer (green-square)
to the hard-lower layer (blue-square).

dissipation occurs. As expected, in a soft-to-hard layers transition the drilling
efficiency decreases with the progression of u, and this confirms the reduction in
the depth-of-cut d.
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Figure 3.12: Drilling efficiency with the variations of applied weight W during
the transitional phase of bit motion (with a parabolic profile) from a soft-upper
layer to a hard-lower layer (u = 0: fully in soft layer, u = b/a = 2.05: fully in hard
layer).
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Figure 3.13: Drilling efficiencies comparison for both linear (dashed line) and
parabolic (solid line) bit profiles during the transitional phase of bit motion from
a soft-upper layer to a hard-lower layer (u = 0: fully in soft layer, u = b/a = 2.05:
fully in hard layer).
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3.5.2.1 Comparison of the drilling efficiency for different bit profiles
within the transition from soft to hard layers

Notably, the transition of the drilling efficiency shows a nonlinear dependency on
u, which is related to the bit shape embodied in the function f(r). To assess the
effect of bit profile on the drilling efficiency, we compare two different ideal bit
profiles: (i) a linear function f(r) = Azr, (ii) a parabolic function f(r) = Azr

2),
both for a soft-to-hard layers transition.

Figure 3.13 reveals that the drilling efficiency for the parabolic profile shows more
drop-off in the early phase of the transition (i.e., for small values of the engagement
u) as compared to the drilling efficiency of the linear profile. This can also be
understood by realizing that, for small values of u for the parabolic bit shape, a
larger (radial) portion of the bit is engaged within the lower (hard) layer than for
the same value of u for the linear bit profile – see in the inset in Figure 3.13. This
inset shows both the linear and parabolic bit profiles with the same height and
radius of which the values are listed in Table 3.1. Consequently, these give different
values of the coordinate q and the bit parameters ϑlζ and ϑlξ for the cutting and
frictional components, respectively, (see Eq. (3.29)) for the calculations of drilling
efficiency in Eq. (3.34).

3.6 Conclusions
This study has extended the bit/rock interface laws of fixed cutter (PDC) bits,
developed earlier in [58, 59, 194] for homogeneous formations, to the case of a
bit transitioning between two different rock layers. In particular, the extended
formulation of the interface laws involves the adaptation of the rock mechanical
properties and bit-design parameters used in the cutting and frictional contact
components of the laws. Based on this novel bit/rock interaction model we, firstly,
constructed 3D E − S diagrams and, secondly, analyze the drilling efficiency as
a function of the bit engagement in the transitional phase between two layers.
From the numerical examples, these aspects have shown distinct characteristics
of dynamic and kinematic variables between the homogeneous formation and two-
layered formation. In addition, it has been shown that the 3D E−S diagram and
the drilling efficiency are highly dependent on the bit shape for such transitional
phase (via the bit engagement) and deviate essentially from the well-known 2D
E − S diagram for homogeneous formation. This shows the relevance of these
novel bit/rock interface laws for analyzing drilling efficiency. In addition, these
interface laws can also be used in the scope of dynamic drill-string models for
layered formations (e.g., for the analysis of vibrations).





Chapter 4

Dynamic analysis of a down-hole
regulator for drilling in
interbedded formations

Abstract1 - This chapter investigates the effect of a down-hole passive regulator (AST)
on the dynamics of rotary drilling systems in interbedded formations. Drilling in in-
terbedded formations can significantly affect the vibrational signature of these systems
and the associated drilling performance. Hence models to assess the impact of drilling
in such formations are needed. Hereto we construct a dynamic model of the drill-string
system which incorporates the bit/rock interface laws for the transitional phase of bit
motion between rock layers with distinct mechanical properties. In the model, the axial
and torsional dynamics of the drill-string systems are coupled by these interface laws and
cast in the form of discontinuous (state-dependent) delay differential equations. Next,
we include the AST in the dynamic model to enable the assessment of the influence of
this down-hole tool on drilling performance, in particular in terms of rate-of-penetration
(ROP) and drilling efficiency. Furthermore, we also investigate the mechanical specific
energy (MSE) and steady-state power losses at the bit (due to frictional torque) for
different operational conditions and rock layer thicknesses. The analysis reveals that an
increased drilling efficiency and lower MSE are obtained by incorporating the down-hole
tool in the drill-string, resulting in a higher ROP and a lower frictional contact between
the bit and rock in interbedded formations.

1This chapter is based on: [19] A.G. Aribowo, R. Wildemans, E. Detournay, N. van de
Wouw, “Dynamic analysis of a downhole regulator for drilling in interbedded formations", Soci-
ety of Petroleum Engineers (SPE) Journal, Volume 28, Issue number 04, pp. 1611–1635, Paper
number: SPE-214310-PA, 2023. Related preliminary results are reported in [18] and the main
findings of this chapter are summarized in [14].
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4.1 Introduction
Drilling deep well-bores is required for the exploration and production of energy
resources trapped in the rock formations located in the subsurface. Furthermore,
drilling operations play an important role in a full-scale carbon capture and stor-
age (CCS) project – as an effort to mitigate the effects of global climate change
by reducing CO2 emission into the atmosphere [130]. One of the keystones for
the economic feasibility in completing these operations is to improve the drilling
performance and consequently reducing the capital and operational expenditures.

Although rotary drilling systems equipped with fixed cutter bits (also known as
Polycrystalline-Diamond-Compact or simply PDC bits) are widely recognized as
being the most efficient for drilling operations [87, 9], they are prone to severe self-
excited vibrations that are generated by the bit/rock interaction [76, 147, 57, 169].
The vibrations inevitably lead to damage to the drilling equipment, early fatigue
of drill pipes and premature failure of the bits [190, 54, 37, 72]. In particular,
layered rock formations, which consist of soft and hard layers with distinct rock
mechanical properties, further influence the dynamical response of the rotary
drilling systems and result in a decrease of drilling performance [113, 26, 134, 63].

To face these operational challenges and improve the performance of drilling op-
erations in interbedded formations, the development of new technologies has been
pursued, including the development of a down-hole passive regulator, the so-called
AST, as reported in [53]. An impression of AST is given in Figure 4.1 (left) with
the green-colored section of drill-string, above the bit. Field results have shown
that the use of the AST can improve the drilling performance in terms of the
drilling efficiency and ROP [141]. This passive mechanical down-hole tool installed
in a section of the Bottom-Hole-Assembly (BHA) also improves the life-time of the
drill-bit (i.e., less damage on the drill-bit after one run), especially when drilling
in heterogeneous formations that contain hard and soft layers [158, 140, 10].

In previous studies to investigate the effect of the AST on drilling performance, a
model-based approach was pursued, particularly to study the effect of the tool in
terms of ROP and drilling efficiency when drilling vertical [181] and deviated wells
[187]. For this purpose, a two degrees-of-freedom (2 DOFs) discrete model of the
rotary drilling system (here referred to as the RGD model [147]) was extended to
incorporate the AST.

In the RGD model and its extensions with the AST, the (rate-independent)
bit/rock interface laws for homogeneous formation were applied as the bound-
ary conditions at the bit [58, 59]. All these works considered homogeneous rock
formations and did not account for interbedded rock formations and their effect
on the bit/rock interaction and, in turn, on the drilling response. Therefore in
this chapter, a scenario of drilling in a layered formation is considered, as sketched
in Figure 4.1 (right). Thus, the main aim of this chapter is to investigate: (i) the
drill-string dynamics when drilling interbedded formations with distinct mechan-
ical properties (e.g., soft and hard layers), and (ii) the impact of the AST tool on
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(a) (b)

Figure 4.1: (a) AST tool (Source: Tomax AS). (b) Schematic overview of rotary
drilling system equipped with PDC bit and the AST in a vertical well-bore during
a transitional phase between two rock layers.

the drilling performance in such scenarios.

With these goals in mind, the main contributions of this work can be summarized
as follows:

• Firstly, we extend the dynamic drill-string model in [147, 57], originally
limited to drilling homogeneous formations, to account for heterogeneous,
interbedded formations. Hereto, we exploit novel bit/rock interface laws
[17] that relate the dynamic variables to the kinematic variables at the bit
and involve the transitional phase of the bit motion between two rock layers.

• Secondly, we further extend this model by including a model for the AST
tool and thereby extend existing models for drilling systems with the AST
tool in [181, 187].

• Thirdly, we perform a comparative dynamic analysis of these two models to
investigate: i) the effect of the interbedded rock formation on the drilling
response, and ii) the effect of the AST tool on the drilling performance.

• Finally, the effect of AST on the frictional dissipation at the bit is also
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analyzed within the same scenario of drilling interbedded formations. This
investigation sheds light on how the AST tool helps to prevent bit damage
(due to friction-induced (heat) loading of the cutters) in drilling interbedded
formations.

The chapter is organized as follows. Section 4.2 summarizes the two foundations
for this study: (i) the bit/rock interface laws for the transition between two
layers, and (ii) the dynamic models of a drill-string system without and with
AST. In Section 4.3, a dynamic analysis is performed to investigate the effect of
the heterogeneous nature of the formation on the drilling response and the impact
of the AST tool on this response in terms of ROP, drilling efficiency, and MSE.
Subsequently, this section is closed by further discussing the effect of AST on the
frictional torque dissipation and power losses within the same drilling scenario.
Finally, conclusions are drawn in Section 4.4.

4.2 Modeling of the Drill-String Dynamics in
Interbedded Formations

In this section, the bit/rock interface laws including the transitional phase and
both dynamic models of drill-string systems (benchmark model without AST
tool (BM) and a model with AST (AST)) in drilling interbedded formations
are presented. Referring to the schematic overview of a rotary drilling system
in Figure 4.1 (right), we employ the interface laws as the boundary conditions
(BC) at the bottom of the drill-string. The applied hook-load H0 and prescribed
angular velocity (RPM) Ω0 act as the BC at the surface.

4.2.1 Bit/Rock Interface Laws for the Transitional Phase
between Two Layers

The (rate-independent) bit/rock interface laws constructed in [17] are a set of
relations between the dynamic variables, namely weight on bit (WOB) W and
torque on bit (TOB) T , and two physical quantities of the bit motion (in steady-
state drilling condition): (i) the kinematic variable d as the depth-of-cut (DOC)
produced per bit revolution, and (ii) the evolution parameter Zb as the bit en-
gagement in the associated lower layer during the transition between two layers.
The interface laws account for both cutting and frictional contact processes. The
forces associated to these two processes depend on the mechanical properties of
the rock layers and on the bit-design parameters.

4.2.1.1 Bit Profile

In the interface laws, a simplified representation of PDC bit is considered. The
bit is characterized by its height b and its radius a as depicted in Figure 4.2,
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Figure 4.2: Bit profile and local penetration p of a single bit blade [194, 17].

and consists of n symmetric radial blades separated by an angular distance 2π/n
between two successive blades. The radial distance between a point located on the
edge of the blade profile (the cutting edge curve C) and the bit axis of symmetry
is denoted by R (i.e., 0 ≤ R ≤ a), while the vertical distance between a point
located on the bit axis of symmetry and the origin at the lowest point on the bit
is denoted by Z (i.e., 0 ≤ Z ≤ b).

The cylindrical coordinate basis (ir, iω, iz) on the bit is introduced where the iz-
axis coincides with the bit axis of symmetry while pointing upward and the origin
is selected at the reference point of the bit (located at the lowest point on the bit
profile). In this coordinate basis, the bit profile (the shape of the cutting edge
curve C) is characterized by a (dimensionless) function f(·) with the following
mapping:

z = f (r) , (4.1)

where the variables are obtained by scaling the two distance quantities on the bit
with the bit radius a : (i) z = Z/a, and (ii) r = R/a. In this chapter, we consider
a parabolic bit shape function f(r) = azr

2 with a positive constant az.
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Figure 4.3: The bit engagement during the transitional phase.

4.2.1.2 Interbedded Formations

The interbedded formations, as considered here, are represented by a layered
structure of alternating soft and hard, thin layers with the total number of layers
equal to K. We index each rock layer with k ∈ {1, 2, 3, . . . ,K}. To distinguish
the two layers involved in a transitional phase of the bit motion, the upper layer
is denoted as the (k − 1)th layer, while the lower layer is as kth layer; see Figure
4.3. The interface between these two subsequent distinct layers is located at the
depth Lk−1 with L0 = 0. For simplicity 2, each layer is assumed to have the same
thickness H, where Lk − Lk−1 = H for all k ∈ {1, 2, 3, . . . ,K}.

In this chapter, we consider scenarios where the layer thickness H is equal to
or larger than the bit height b. This constraint implies that the bit is at most
engaging in two consecutive layers during the transitional phase. Hence, the
bit/rock interface laws described below distinguish between two conditions: (i)
the bit is fully engaged in a single rock layer (as a temporarily homogeneous
phase), and (ii) the bit is partially engaged in two consecutive layers as depicted
in Figure 4.3 (as a transitional phase).

2The models presented here are, however, also valid for the layer thickness H dependent on
the layer index k, i.e., varied thickness of each layer in the rock formations
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4.2.1.3 Bit Engagement

At the interface of two rock layers, let consider the coordinate basis (i1, i2, i3).
The i3-axis coincides with the bit axis of symmetry while pointing ahead of the
bit, and the i1-axis coincides with the layer interface (see Figure 4.3). The origin
of this coordinate system is selected at the intersection between the bit axis of
symmetry and the interface.

As the advance of the bit in the i3 direction during a transitional phase, the
coordinate system on the bit (ir, iω, iz) also moves relatively to this coordinate
system at the interface (i1, i2, i3). Now let consider a point P (in red as depicted
in Figure 4.3) located at the intersection of the cutting edge curve C with the
horizontal interface line. At P , we define the evolution parameter Zb as the
vertical distance that represents how deep the bit has entered into the lower layer
relative to the layer interface. At the same point, we also define the radial distance
Rb calculated from P to the origin of the coordinate system (i1, i2, i3) located on
the interface. Note that these two parameters evolve as the bit progresses into
the lower layer.

Furthermore, by scaling these quantities at the interface with the bit radius a,
firstly we have the dimensionless engagement (evolution) parameter

zb = Zb
a
, for 0 ≤ Zb ≤ b, (4.2)

such that zb ∈ [0, b/a]. Secondly, we have an alternative evolution parameter rb
that is given by

rb = Rb
a
. (4.3)

Under the coordinate system on the bit (ir, iω, iz), we relate these two dimension-
less evolution parameters via the bit profile function in Eq. (4.1) and arrive into
the following mapping for the bit engagement in the lower layer:

zb = f(rb), for 0 ≤ rb ≤ 1. (4.4)

Parameter rb is used to identify which part of the bit is engaged in the upper
and lower rock layers; rb can also be expressed uniquely in terms of zb due to the
invertibility of f(·) (due to its monotonicity): rb = f−1(zb), for 0 ≤ zb ≤ b/a.

4.2.1.4 Bit Kinematics: Depth-of-Cut and Time-Delay

In Figure 4.4, the generalized coordinates for describing the drill-string response
at the bit are the axial and angular displacements of the drill bit, respectively
denoted as Ub and Φb. The quantity tn denotes the (state-dependent) time-delay
arising from the bit/rock interaction due to the cutting process (also known as
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Figure 4.4: Bottom-hole profile between two successive blades of a drill-bit.

the regenerative cutting effect), which is equal to the time interval in which the
bit rotates 2π/n rad (the angle between two-successive blades on the PDC bit).
Thus, the delayed axial and angular displacements are denoted by Ub(t− tn) and
Φb(t− tn), respectively. Note also that the axial displacement Ub corresponds to
the lowest point at the bit [147].

The time-delay tn is characterized by the following implicit relation based on the
angular displacements (as illustrated in Figure 4.4):

t∫
t−tn(t)

dΦb(s)
ds ds = Φb(t)− Φb(t− tn(t)) = 2π

n
. (4.5)

The time-delay tn plays a key role in the reaction force and torque acting on
the bit due to the cutting process, in particular for calculating the instantaneous
depth-of-cut produced by each blade that is given by

dn(t) = Ub(t)− Ub(t− tn). (4.6)

Note that we also employ the concept of local penetration [194, 17] that gives the
local depth p produced per revolution as depicted in Figure 4.2. This local depth
p varies along the cutting profile of the blade (the curve C) due to the effect of the
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bit shape in terms of the profile function f(·), and is calculated as the projection
of vector

−−→
PP ′ onto the normal direction n̂ as follows:

p = dncosα, with cosα = 1√
(f ′(r))2 + 1

. (4.7)

This depth is used to calculate the part of the cutting component of the WOB W
and TOB T .

Furthermore, the bit engagement Zb in the lower rock layer is updated via

Zb(t) = min(b, Ub(t)− Lk∗−1), (4.8)

where k∗ is the minimum k ∈ {1, 2, 3, . . . ,K} such that it holds that Ub(t) −
Lk∗−1 ≥ 0, with L0 = 0. The layer index k∗ is also updated based on the latest
displacement Ub(t) relative to the depth Lk−1 as the bit progresses into the lower
layer.

4.2.1.5 Cutting Component of the Torque and Weight On the Bit

According to [17], the reaction torque acting on the bit due to the cutting pro-
cess in interbedded formations (either in temporary-homogeneous or transitional
phase) is expressed:

T c = a2

2 d
(
εk−1

(
1− r2

b

)
+ εkr

2
b

)
. (4.9)

with d = ndn as the total depth-of-cut of n identical blades on the bit. The
mechanical properties influencing the cutting component of the bit/rock interface
laws are the rock intrinsic specific energies in upper and lower layers, εk−1 and
εk, respectively (in the unit of pressure).

The contribution of the cutting process on the weight on bit can be written as

W c = a ζ∗ d
(
εk−1

(
1− ϑζk

)
+ εk ϑ

ζ
k

)
. (4.10)

Herein, the nominal bit-design parameter ζ∗ is defined as ζ∗ := ζ ϑζ with a positive
constant ζ and

ϑζ :=
1∫

0

1√
(f ′ (r))2 + 1

dr, (4.11)

that describes the orientation of the local cutting force in each cutter and thus
depends on the bit profile function f(r). Parameter ϑζk in Eq. (4.10) is the bit
design parameter of the cutting component in the lower layer and is defined as
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ϑζk(rb) := 1
ϑζ

rb∫
0

1√
(f ′ (r))2 + 1

dr. (4.12)

This parameter depends on the bit engagement Zb in Eq. (4.8) via Eqs. (4.2) –
(4.4).

4.2.1.6 Wear-Flat-Induced Component of the Torque and Weight On
the Bit

In the contributions associated with the frictional contact between the cutter wear-
flat and rock, the reaction contact force acting on the wear-flats λa is formulated
as a set-valued force law at the velocity level (reflecting the unilateral contact law;
see [104]) by the following inclusion [17]:

λa ∈ − (σ̄k−1 (1− rb) + σ̄k rb)na `n g
(
U̇b
)
, (4.13)

with σ̄k−1 and σ̄k as the maximum contact pressure at the wear-flat interface in
upper and lower layers, respectively. The axial velocity of the drill bit is denoted
by U̇b, and `n is the length of the wear-flat. The function g(·) is the velocity-
dependent set-valued function defined as

g
(
U̇b
)

:= 1
2
(
1 + Sign

(
U̇b
))
, with Sign (y) :=

 1
[−1, 1]
−1

,
y > 0
y = 0
y < 0

. (4.14)

In addition, as a consequence of the set-valued nature of the law in Eq. (4.13), the
admissible values of the reaction contact force λa on the wear-flat form a convex
set Ca given by

Ca = {λa | − (σ̄k−1 (1− rb) + σ̄k rb)na `n 6 λa 6 0} . (4.15)

Furthermore, this frictional contact results in a frictional torque acting on the
bit. This torque, as formulated in [17], is associated with the Coulomb friction
law and thus obeys the set-valued force law on velocity level via the following
inclusion:

λt(λa) ∈ (µk−1 σ̄k−1 (1− ϑξk) + µk σ̄k ϑ
ξ
k) a ξ λa

2 (σ̄k−1 (1− rb) + σ̄k rb)
Sign

(
Φ̇b
)
, (4.16)

with µk−1 and µk as the frictional coefficients (for the bit-rock contact) in upper
and lower layers, respectively, and Φ̇b the angular velocity of the drill bit. The
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nominal bit-design parameter ξ in Eq. (4.16) represents the orientation and the
distribution of wear-flats that are dependent on the bit shape function f(r), and
is expressed as

ξ := 2
1∫

0

r

√
(f ′ (r))2 + 1 dr. (4.17)

Parameter ϑξk in Eq. (4.16) is the bit design parameter of the frictional component
in the lower layer and is defined as

ϑξk(rb) := 2
ξ

rb∫
0

r

√
(f ′ (r))2 + 1 dr. (4.18)

This parameter also depends on the bit engagement Zb in Eq. (4.8) via Eqs. (4.2)
– (4.4); see also the bit design parameter of the cutting component in Eq. (4.12).
In addition, the admissible values of the frictional torque λt in Eq. (4.16), which
depends on the reaction (normal) contact force λa, also form a convex set Ct given
by

Ct = {λt | βλa 6 λt 6 −βλa} , (4.19)
with

β = a ξ (µk−1 σ̄k−1 (1− ϑξk) + µk σ̄k ϑ
ξ
k)

2 (σ̄k−1 (1− rb) + σ̄k rb)
. (4.20)

4.2.1.7 Total WOB and TOB

The total weight and torque acting on the bit due to the cutting process and
frictional contact in the bit/rock interaction can be summarized as follows:

W = W c +W f , (4.21)
T = T c + T f , (4.22)

where W c and T c are given by Eqs. (4.10) and (4.9), respectively. We also have
W f = −λa and T f = −λt, with λa and λt obeying Eqs. (4.13) and (4.16),
respectively. Note that the superscripts c and f are associated with the cutting
and frictional contact components of the bit/rock interaction, respectively, while
the subscripts a and t refer to the axial and torsional directions, respectively. See
also the list of bit parameters in Table B.2 in Appendix B.1.

4.2.2 Dynamic Drill-String Models without and with AST

In this work, we consider the lumped-parameter modeling approach (similar to
the works in [181, 187]) for constructing the equations of motion (EOMs) of the
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benchmark model (BM) and the AST model (AST) for drilling in interbedded
formations. Note that the difference between the developed model in this work and
that in the earlier works [181, 187] is related to the fact that the bit/rock interface
laws change essentially from a scenario of homogeneous rock formation to the
scenario of an interbedded formation. This chapter presents a dynamic drill-string
model, including the AST and a bit/rock interaction in a layered formation. The
bit/rock interface laws, summarized in the previous section, represent boundary
conditions that couple the axial and torsional dynamics of the drill-string, as
depicted in Figures 4.5 and 4.7 for the BM and AST models, respectively. Hence,
the dynamics of these models are written in the following compact general form:

Mq̈ (t)− h (t,q (t) , q̇ (t) ,q (t− tn (t))) = Wλ, (4.23)

or in a simpler form for notational convenience by omitting the dependence of q
on the time variable t:

Mq̈ − h (t,q, q̇,qtn) = Wλ. (4.24)

Herein, q is the column vector with the generalized coordinates. Furthermore, we
define the column vector qtn := q (t− tn (t)) for storing the delayed generalized
coordinates. The matrix M is the symmetric, positive-definite mass matrix. The
generalized forces and torques related to smooth processes (i.e., they exclude the
contact force and frictional torque acting on the bit) are collected in the column
h, i.e., damping, stiffness, gravitational forces, the top-side boundary conditions
(hook-load, imposed angular velocity) and cutting process taking place at the
bit/rock interface. The force and torque acting on the bit due to the frictional
contact between the cutter wear-flat and rock are collected in the column λ. In
addition, the generalized directions of these contact force and frictional torque
acting on the bit are collected in the matrix W. The low-frequency dynamics of
the real system are embedded in this discrete model of the drill-string system in
Eq. (4.24).

4.2.2.1 Benchmark (BM) Model

In Figure 4.5, the lumped-parameter benchmark (BM) model is schematically
depicted, and the EOMs are written in the compact form of Eq. (4.24), where
its components are detailed as follows. The generalized coordinates q in the BM
model are given by

q =
[
Ub Φb

]>
. (4.25)

The delayed coordinates qtn are given by

qtn = q (t− tn (t)) =
[
Ub (t− tn (t)) Φb (t− tn (t))

]>
. (4.26)

In the BM model, the mass matrix reads

M =
[
M 0
0 I

]
, (4.27)
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Figure 4.5: Benchmark model of a drill-string system equipped with a PDC bit
in a vertical well-bore (BM model).

with M denoting the total mass of drill-string and I the total inertia.

The column h in Eq. (4.24) for the BM model reads as follows:

h (t,q, q̇,qtn) =
[

−DU̇b
−DΦΦ̇− Cp (Φb − Ω0t)

]
+
[
Wa

0

]
+
[
−W c

−T c
]
, (4.28)

with D the axial damping coefficient and DΦ the torsional damping coefficient
– all to represent the viscous friction terms along the drill-pipes and the BHA.
The stiffness of the drill-string is represented by the torsional stiffness Cp. As
the imposed boundary conditions at the topside, we have the followings: (i) the
top angular velocity (RPM) Ω0, and (ii) the hook-load H0 (in upward direction,
driven by the top-drive system of the rig). Then, the applied force (weight) at
the bit Wa is expressed as

Wa = Ws −H0. (4.29)
Herein, Ws = BfMg is the total drill-string weight that is submerged in the
drilling fluids (mud), where Bf is the buoyancy factor due to the mud and g is
the gravitational acceleration. The force W c and torque T c acting on the bit due
to the cutting process in the bit/rock interaction follow Eq. (4.10) and Eq. (4.9),
respectively.

The column λ for the BM model is constructed in the following way:

λ =
[
λa λt

]>
, (4.30)

with the generalized directions of these frictional components given by

W =
[

1 0
0 1

]
. (4.31)

The axial contact force λa and frictional torque λt obey the set-valued force laws
in Eqs. (4.13) and (4.16), respectively.
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Figure 4.6: The key components and an example of the contraction movement of
the Anti-Stall Tool (AST) [158, 140, 141].
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Figure 4.7: Model of drill-string system equipped with PDC bit and the AST in
a vertical well-bore (AST model).
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4.2.2.2 AST Model

Figure 4.6 describes the two key components of the AST: an internal preloaded
spring and a helical spline. The AST couples the axial and torsional dynamics
of the drill-string as an increase of torque causes the contraction of the tool. In
Figure 4.7, the lumped-parameter model including the AST (here referred as the
AST model) is schematically depicted. The EOMs for the AST model are also
written in the form of Eq. (4.24). In this model, the drill-string system is divided
into two sections: (i) the section above the AST and (ii) the section below the
AST. The generalized coordinates qg of the AST model read

qg =
[
U Φ Ub Φb

]>
. (4.32)

The additional coordinates, U and Φ, are the axial and angular displacements
of the (lumped) drill-string section above the AST, respectively (see Figure 4.7).
Due to the presence of the AST, the generalized coordinates qg are subject to a
kinematic, holonomic constraint that is representative of the design of the AST;
via the lead p as a function of lead angle β and the spline radius rsp (see also
[181, 187]). This kinematic constraint can be written as

(U (t)− Ub (t)) = p

2πrsp
(rspΦ (t)− rspΦb (t)) , (4.33)

or alternatively as follows:

hAST = α (Φ (t)− Φb (t))− (U (t)− Ub (t)) = 0, (4.34)

where we define

α := p

2π , with p := 2πrsp tan β. (4.35)

As detailed in [187], the set of dependent generalized coordinates qg in Eq. (4.32)
can be transformed into the following independent generalized coordinates q due
to this kinematic constraint of AST:

q =
[
U Ub Φb

]>
. (4.36)

The delayed coordinates qtn for the AST model are then given by

qtn = q (t− tn (t)) =
[
U (t− tn (t)) Ub (t− tn (t)) Φb (t− tn (t))

]>
. (4.37)

Furthermore, the mass Ma and the inertia Ia lump the drill-string section above
the AST (see Figure 4.7). The torsional stiffness Cp and the axial damping
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coefficient D for this section above the AST are the same as in the BM model. We
also consider the torsional damping coefficient DΦa

as one of the viscous friction
terms on the section above the AST.

The massMb and the inertia Ib are considered for the drill-string section below the
AST, including another torsional damping coefficient DΦb

as the viscous friction
term in this section. Note also that the total mass and total inertia of the drill-
string sections above and below the AST (in the AST model) is equal to the mass
and inertia in BM model, respectively, i.e., M = Ma +Mb and I = Ia + Ib. This
also applies on the total torsional damping coefficients of the sections above and
below the AST, which is equal to the torsional damping coefficient in the BM
model, i.e., DΦ = DΦa

+DΦb
.

In addition, we denote the total submerged drill-string weights above and below
the AST as Was = BfMag and Wbs = BfMbg, respectively. The boundary
conditions imposed at the topside in the AST model are also the top angular
velocity Ω0 and the hook-load H0. The flexibility in the AST are described by
the stiffness Kb and damping coefficient Db.

Hence, the EOMs of AST model can be formulated in the form of Eq. (4.24) in
terms of three independent coordinates q as in Eq. (4.36). The mass matrix M,
column h and matrix W are given by:

M =

 Ma + 1
α2 Ia − 1

α2 Ia
1
αIa

− 1
α2 Ia Mb + 1

α2 Ia − 1
αIa1

αIa − 1
αIa Ia + Ib

 , (4.38a)

h (t,q, q̇,qtn) =

 −Kb (U − Ub)−DU̇ −Db

(
U̇ − U̇b

)
+Was −H0 · · ·

Kb (U − Ub) +Db

(
U̇ − U̇b

)
+Wbs −W c · · ·

−DΦa

( 1
α

(
U̇ − U̇b

)
+ Φ̇b

)
−DΦb

Φ̇b − T c · · ·
· · · −DΦa

( 1
α2

(
U̇ − U̇b

)
+ 1

α Φ̇b
)
− Cp

( 1
α2 (U − Ub) + 1

αΦb
)
· · ·

· · ·+DΦa

( 1
α2

(
U̇ − U̇b

)
+ 1

α Φ̇b
)

+ Cp
( 1
α2 (U − Ub) + 1

αΦb
)
· · ·

· · · − Cp
( 1
α (U − Ub) + Φb

)
· · ·

· · ·+ 1
αCpΩ0t

· · · − 1
αCpΩ0t

· · ·+ CpΩ0t

 , (4.38b)

W =

 0
1
0

0
0
1

 , (4.38c)

where the frictional/contact components to the weight- and torque-on-bit in λ
again obey the set-valued force laws in Eqs. (4.13) and (4.16), and are expressed
as in Eq. (4.30). The lists of drill-string parameters and variables used in the
BM and AST models are given in Table B.3 in Appendix B.1 and Table B.4 in
Appendix B.4, respectively. In order to reduce the number of parameters and
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Table 4.1: Bit and rock mechanical properties for soft and hard layers.
Parameter Name Soft Layer Hard Layer Unit

Intrinsic specific energy (ε) 150 200 MPa
Contact pressure (σ) 150 200 MPa
Friction coefficient (µ) 0.75 1.0 [–]
Bit height (b) 22.2 22.2 cm
Bit radius (a) 10.8 10.8 cm

to facilitate the numerical simulations effectively, the equations of motion in the
form of Eq. (4.24) for both BM and AST models are expressed in dimensionless
forms; see the detailed derivations for both models in Appendix B.1 and the list
of associated parameters in Table B.1. In addition, the computational scheme
employed to simulate the responses of these models is summarized in Appendix
B.2.

4.3 Drill-String Responses in Interbedded
Formations and the Effect of the AST Tool
on Performance

In this section, we employ the developed models to analyze, firstly, the effect of the
interbedded nature of the rock formation on the dynamic response characteristics
for the benchmark model and, secondly, the effect of the AST tool on the dynamic
responses (and the related drilling performance) of the drill-string system. The
effect of both aspects on the drilling performance in terms of rate-of-penetration
and drilling efficiency, including mechanical specific energy, is also investigated.

In the simulations, thin layers in terms of the ratio H/b ∈ {1, 2, · · · , 10} between
the layer thickness and bit height are considered, and the bit parameters and
the rock mechanical properties are listed in Table 4.1. For the boundary condi-
tions applied at the top surface, we apply the following representative values for
hook-load and surface angular velocity: (i) hook-load H0 ∈ {420, 440} kN corre-
sponding to higher and lower weights Wa applied on the bit, respectively, based
on Eq. (4.29), and (ii) prescribed angular velocity Ω0 = 80 rpm. We focus on the
variation of the hook-load to investigate how the tool performance behaves over
the combination of these nominal operational settings.

In the first subsection, we discuss the main response characteristics of the axial
and torsional dynamics of the BM model under the effect of layered formation.
The effect of the AST tool on the drilling performance in such drilling scenario
is investigated further in the second subsection, which is divided into two parts:
(i) the emphasis on its effect on the rate-of-penetration, and (ii) the emphasis
on its effect on the drilling efficiency and mechanical specific energy. The last
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subsection discusses the effect of the AST tool on the (steady-state) power losses
due to the frictional torque in the bit/rock interaction.

4.3.1 Axial and Torsional Responses of the Benchmark
Model

Figure 4.8 depicts the time-domain responses of the axial and torsional velocities
at the bit of the BMmodel for a drilling scenario in an interbedded formation. The
simulation uses the following settings: (i) layer thickness H = b, (ii) hook-load
H0 = 440 kN, and (iii) surface angular velocity Ω0 = 80 rpm. The first initial
rock layer is set as a soft rock type (colored in green in the response plots) then
followed by a hard rock type (colored in red), with a spatially periodic sequence
of soft-hard rock layer structure afterwards. The black vertical lines between
these green and red areas show the time when the bit contacts a new layer. Note
that in this simulation scenario, we let the drill-string system first converge to a
steady-state limit-cycling condition in a homogeneous formation (i.e., in the first
soft layer for this case) and subsequently let it enter the layered formation.

In general, the responses of the BM model exhibit axial and torsional (stick-slip)
limit-cycles, with a periodicity reflecting the spatial periodicity of the formation
layering. The responses also show that due to the limited thickness of the layers
(in terms of H/b) the vibrational responses do not have sufficient time to converge
to the steady-state responses associated with a homogeneous (either hard or soft)
layer. Thus, this shows that the response in interbedded formations (i.e., the right-
zoomed plots in Figure 4.8) is essentially different from those in homogeneous
layers (i.e., the left-zoomed plots in the same figure).

Furthermore, the axial bit velocity in the BM model, as expected, increases in soft
layers and decreases in hard layers, however with a complex vibrational signature.
By noting that each layer has the same thickness, this leads to shorter elapsed
time in drilling soft layers than the hard ones as seen in the responses, e.g., the
time duration in the green areas is significantly shorter than in the red areas in
Figure 4.8.

4.3.1.1 Rate-Of-Penetration And Drilling Efficiency

In this section, we analyze the effect of the interbedded nature of the rock forma-
tion on the rate-of-penetration (ROP) and drilling efficiency. First, the periodicity
of the solutions as depicted in Figure 4.8 allows to perform time-based averaging of
the solutions over two consecutive rock layers to analyze the drilling performance
in terms of the averaged response.

As detailed in [18], the total time required to drill two consecutive layers is
∆t = ∆tk−1 + ∆tk, where ∆tk−1 is the time needed for drilling through the
(k − 1)th (upper) layer and ∆tk the time needed for drilling through the kth
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(a)

(b)

Figure 4.8: Effect of the layered formation on (a) the axial and (b) the torsional
dynamic responses of the drill-string model without AST (BM model) with the
layer thickness H = b and the top boundary conditions: hook-load H0 = 440 kN
and prescribed angular velocity Ω0 = 80 rpm. The red dots show the peak values
of the associated responses in the steady-state region.

(lower) layer. Let
〈
f̂k−1

〉
and

〈
f̂k

〉
be the harmonic means of a time-varying

response function f̂(t) in the upper layer over an elapsed time ∆tk−1 and in the
lower layer over another elapsed time ∆tk, respectively. Thus, a generic form for
the total harmonic mean of a time-varying response function f̂(t) over the total
time ∆t is given by
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〈
f̂
〉

= 1
∆t

 ∆tk−1∫
0

f̂ (τ) dτ +
∆tk−1+∆tk∫
∆tk−1

f̂ (τ) dτ

 =

〈
f̂k−1

〉
∆tk−1

∆t
+

〈
f̂k

〉
∆tk

∆t
.

(4.39)

As each layer thickness is assumed to be identical, the following relations hold

∆tk−1

∆t
=

〈
U̇b
〉

2
〈
U̇ bk−1

〉 , ∆tk
∆t

=
〈
U̇b
〉

2
〈
U̇ bk
〉 , (4.40)

where
〈
U̇ bk−1

〉
and

〈
U̇ bk
〉
denote to the averaged ROP in the upper and lower

layers, respectively. Noting that

∆tk−1

∆t
+ ∆tk

∆t
= 1, (4.41)

and substituting the relations in Eq. (4.40) into Eq. (4.41) yield the following
expressions for the averaged ROP

〈
U̇b
〉
in the layered formation:

〈
U̇b
〉

=
2
〈
U̇ bk−1

〉 〈
U̇ bk
〉〈

U̇ bk−1
〉

+
〈
U̇ bk
〉 . (4.42)

Second, we consider the definition of drilling efficiency in [187] that is expressed
as the ratio between the (averaged) torque on bit used for removing rock and the
(averaged) total torque on bit (which includes the torque lost due to the frictional
dissipation). Thus the drilling efficiency for the kth layer can be expressed as
follows:

ηk = 〈T ck 〉

〈T ck 〉+
〈
T fk

〉 . (4.43)

Here 〈T ck 〉 and
〈
T fk

〉
refer to the averaged TOB resulting from the cutting and

frictional contact, respectively, in the bit/rock interaction for each layer (see also
Eqs. (4.9) and (4.16)). Hence, the averaged value of the drilling efficiency η in
interbedded formations can be calculated via Eqs. (4.39) – (4.40) by considering
the drilling efficiencies in the (k − 1)th (upper) layer and the kth (lower) layer
calculated from Eq. (4.43).

Figure 4.9 depicts the averaged ROP
〈
U̇b
〉
(top) and averaged drilling efficiency

η (bottom) in a layered formation, as a function of the ratio H/b ∈ {1, 2, · · · , 10},
for hook-load H0 = 440 kN and surface angular velocity Ω0 = 80 rpm. The
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(a)

(b)

Figure 4.9: Effect of the layered formation for the drill-string model without AST
(BM model) in terms of (a) the (averaged) ROP and (b) the (averaged) drilling
efficiency with the layer thickness variations H/b ∈ {1, 2, · · · , 10} with H0 = 440
kN and Ω0 = 80 rpm.

averaged ROP
〈
U̇b
〉
and averaged drilling efficiency η under this drilling scenario

of layered formation (see the blue lines in both plots in Figure 4.9) are observed to
increase about 88% and 85%, respectively, with decreasing layer thickness ratio
H/b (e.g., these averaged values for thinner layers increase relative to the ones
for thicker layers). Furthermore, we observe in Figure 4.9 that with increasing
ratio H/b, both the averaged ROP

〈
U̇b
〉
and the averaged drilling efficiency η
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are asymptotically converging to the mean values of the averaged steady-state
responses of the associated homogeneous formation cases.

In addition, for the case of drilling homogeneous formations (either for hard or
soft rock layer), the bit response can be averaged over an axial (stick-slip) limit-
cycle. Thus, Figure 4.9 (top) also shows the averaged rates-of-penetration/ROPs
of the soft-homogeneous (in black line) and hard-homogeneous (in red line) for-
mations,

〈
U̇b
〉
soft

and
〈
U̇b
〉
hard

, respectively. Moreover, the averaged ROP
〈
U̇b
〉

of the layered formation case, as expected, lies in between these homogeneous
averaged ROPs. In the same figure, the mean value of these homogeneous ROPs,〈
U̇b
〉
mean−hom, is the asymptotic line (in magenta) for the averaged ROP

〈
U̇b
〉
.

In the same settings, Figure 4.9 (bottom) also depicts the averaged drilling ef-
ficiencies, ηsoft and ηhard, of the soft-homogeneous (in black line) and hard-
homogeneous (in red line) formations, respectively. The drilling efficiency η of
the layered formation case also lies in between the drilling efficiencies of these
homogeneous formations. In the same figure, the mean value of these drilling
efficiencies of homogeneous formations, ηmean−hom, is the asymptotic line (in ma-
genta) for the drilling efficiency η. As a remark, these findings indeed show that
in the case of drilling layered formations, the drill-string dynamics can no longer
be described through homogeneous models and the developed model for drilling
layered formations is indeed required.

4.3.2 Effect of the AST Tool on the Drilling Performance.

In this subsection, the effect of the AST tool on the dynamic responses of the
drill-string system and on the drilling performance in terms of rate-of-penetration
and drilling efficiency is investigated.

4.3.2.1 Effect of the AST Tool on the ROP

Figure 4.10 shows the effect of the AST tool on the axial dynamic response of
the drilling system in interbedded formation (AST model) in the same drilling
scenario considered for the BM Model (H = b, H0 = 440 kN, Ω0 = 80 rpm).
Comparing the axial responses of the BM model in Figure 4.8 (top) with the
AST model shows that the presence of the AST significantly increases the ROP
when drilling both soft and hard layers.

In addition, the amplitudes of the bit axial velocity response of the AST model are
increased, e.g., the peak values of the AST model (see the red dots in Figure 4.10)
are up to 5 times the amplitude of the axial vibrations in the BM model (see the
red dots in Figure 4.8 – top). These findings suggest that stronger axial vibrations
are induced due to the presence of AST and consequently these affect the drilling
performance in interbedded formations, i.e., higher rate-of-penetration.
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Figure 4.10: Effect of the AST tool on the axial dynamic response of the drilling
system in interbedded formation (AST model) with the layer thickness H = b,
with H0 = 440 kN and Ω0 = 80 rpm. The red dot shows the peak value of the
response in the steady-state region.

Performing a frequency-domain analysis of the axial bit responses for both models
reveals that the first harmonic of the response of the BM model lies at 2 Hz,
while it lies at 4 Hz for the model with AST. Hence, the presence of the AST tool
increases both the amplitude and frequency of the axial vibrations of the bit.

4.3.2.2 Effect of the AST Tool on the Contact Force (at Bit/Rock
Interaction)

Figure 4.11 shows the comparison of contact force responses (W f = −λa in Eq.
(4.13)) between the benchmark and AST models. The dashed lines in both re-
sponses show the averaged magnitudes of the contact forces in each layer for both
models.

Firstly, this comparison explains that the extra axial vibrations induced by the
AST give an effect to lower the contact force (in the bit/rock interaction) for
the AST model (in an averaged sense). This is shown by the reduced (averaged)
magnitudes of the contact forces for the AST model as compared to the ones for
the BM model (see the dashed lines in Figure 4.11 - top and bottom). Secondly,
these reduced contact forces in the bit/rock level support to improve the drilling
performance (the ROP increase) in the AST model, as the frictional torque (T f =
−λt in Eq. (4.16)) decreases. This shows more energy used for the rock cuttings
than loosed for the frictional dissipation in the AST model, which will be more
emphasized via the analyses on drilling efficiency and frictional power losses in
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(a)

(b)

Figure 4.11: Comparison of the contact force responses between (a) the bench-
mark and (b) the AST models in drilling interbedded formation with the layer
thickness H = b, with H0 = 440 kN and Ω0 = 80 rpm. The dashed lines show
the averaged magnitudes of the contact forces in each layer.

the next subsections.

4.3.2.3 Averaged ROP Comparison.

The essential difference in the axial responses becomes even more apparent when
comparing the averaged axial bit velocity (ROPs) of the BM and AST models,
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Figure 4.12: Comparison of the averaged ROPs between the benchmark (BM, with
solid line) and AST (dashed line) models under the effects of the layer thickness
variation (H/b ∈ {1, 2, · · · , 10}), for H0 = 440 kN (blue line) and H0 = 420 kN
(red line) with Ω0 = 80 rpm.

which is depicted in Figure 4.12. This figure compares the averaged ROPs between
the benchmark (BM, with solid line) and AST (dashed line) models for different
layer thicknesses (H/b ∈ {1, 2, · · · , 10}) and the nominal set of hook-loads H0 ∈
{420, 440} kN with a fixed surface angular velocity Ω0 = 80 rpm.

When drilling interbedded formations, the averaged ROP in the AST model
(dashed lines) increases almost 2 times compared to the one in the BM model
(solid lines). In addition, the averaged ROPs of both models significantly in-
crease within thinner layers. Overall, lowering the hook-load increases the aver-
aged ROPs in both BM and AST models for all variations of ratio H/b.

As a remark, these findings suggest that increasing axial vibrations associated
with the presence of the AST lead to more efficiency in the cutting process, e.g.,
more rock volume being removed in a given amount of time, higher depth-of-cut
in Eq. (4.6) and consequently higher averaged ROP in Eq. (4.42). Moreover for
supporting the findings, the cutting force ratio increases and the contact force ra-
tio decreases more in the AST model than in the BM model; see further numerical
results in Appendix B.3.

4.3.2.4 Effect of the AST Tool on the Drilling Efficiency and the Me-
chanical Specific Energy

To support further analysis on the effect of the AST, we also investigate the
drilling efficiency and the E − S diagrams [59, 17]. Hereto, we need to define
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both the mechanical specific energy E and the drilling strength S for drilling
interbedded formations (in an averaged sense). The mechanical specific energy
(MSE) E is the quantity representing the amount of energy required to drill a unit
volume of rock accounting for both cutting and frictional contact at the bit/rock
interface. The drilling strength S is defined as the quantity (with the unit of
pressure) that reflects the axial force imposed on the PDC bit for producing the
depth-of-cut.

These quantities of MSE and drilling strength for the kth layer can be expressed
as follows:

Ek = 2 〈Tk〉
a2 〈dk〉

, and Sk = 〈Wk〉
a 〈dk〉

. (4.44)

Herein, 〈Tk〉 and 〈Wk〉 refer to the averaged values of the total TOB and WOB,
respectively, due to the bit/rock interaction for the kth layer; see also Eqs. (4.22)
and (4.21). In addition, 〈dk〉 is the averaged value of depth-of-cut in the kth layer.
Thus, the averaged values of the MSE E and the drilling strength S over the total
time∆t in drilling interbedded formations can also be calculated according to Eqs.
(4.39) and (4.40).

Figure 4.13 (top) compares the averaged drilling efficiency η for the benchmark
(BM, with solid line) and the AST (dashed line) models for the same drilling
scenario that was presented previously. In the presence of the AST, we observe
that the averaged drilling efficiency in the model including AST increases almost
twice compared to the one in the BM model; also with a comparable tendency to
the averaged ROP plot in Figure 4.12. These findings suggest that the increased
axial vibrations associated with the presence of the AST lead to a larger depth-
of-cut as reflected by the increase of the averaged cutting torque applied on the
bit in Eq. (4.9) for the AST model.

Figure 4.13 (bottom) shows the E − S diagram including the comparison of the
E − S values between the BM (in circle markers) and AST (in square markers)
models. From this figure, the decreasing tendencies of the E−S values are visible
in the E − S diagram when comparing the results of the AST model to the ones
of the BM model for a particular value of hook-load H0 (H0 = 440 kN in blue
and H0 = 420 kN in red).

Note that the lower E − S values are desired, such that these values are getting
closer to the so-called cutting line where the ideal cutting process occurs without
any frictional dissipation (i.e., the bit produces higher depth-of-cut); see [59, 17].
Therefore, a decrease in the E −S values of the AST model in Figure 4.13 shows
the positive impact of the presence of the AST tool for the drilling efficiency in
interbedded formation.

As expected, lowering the hook-load increases the averaged drilling efficiency in
both BM and AST models for all variations of ratio H/b. In accordance with these
results, E − S values of both models decrease as the hook-load decreases for all
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(a)

(b)

Figure 4.13: Comparison of (a) the averaged drilling efficiency and (b) the E −S
diagram between the benchmark (BM, with solid line or circle in E−S diagram)
and AST (dashed line or square in E − S diagram) models under the effects of
the layer thickness variation (H/b ∈ {1, 2, · · · , 10}), for H0 = 440 kN (blue color)
and H0 = 420 kN (red color) with Ω0 = 80 rpm.

variations of ratio H/b. In addition, the averaged drilling efficiencies in both BM
and AST models significantly increase within thinner layers, which are reflected
by a decrease of the E − S values.
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Figure 4.14: Comparison of the averaged frictional torque ratios between the
benchmark (BM, with solid line) and AST (dashed line) models under the effects
of the layer thickness variation (H/b ∈ {1, 2, · · · , 10}) and for H0 = 440 kN (blue
line) and H0 = 420 kN (red line) with Ω0 = 80 rpm.

4.3.3 Analysis of Frictional Power Losses: Effect of the
AST

This section investigates the effect of the AST on the averaged frictional torque
at the bit and the (steady-state) power loss due to this frictional torque. This
investigation is motivated by the fact that large frictional dissipation at the bit
is associated with bit damage and wear [72], since high frictional dissipation can
lead to high thermal loading on the bit.

4.3.3.1 Frictional Torque at the Bit

The averaged frictional torque ratio for the kth layer is expressed as follows:

T fk =

〈
T fk

〉
〈T ck 〉+

〈
T fk

〉 . (4.45)

Hence, the averaged value of the frictional torque ratio T f is calculated according
to Eqs. (4.39) and (4.40).

Figure 4.14 shows the comparison of the frictional torque ratio values between
the benchmark (BM, with solid line) and AST (dashed line) models for the same
drilling scenarios – under the variation of layer thicknesses (H/b ∈ {1, 2, · · · , 10})
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Figure 4.15: Comparison of the averaged power losses due to the frictional torque
at the bit between the benchmark (BM, with solid line) and AST (dashed line)
models under the effects of the layer thickness variation (H/b ∈ {1, 2, · · · , 10}) and
for H0 = 440 kN (blue line) and H0 = 420 kN (red line) with Ω0 = 80 rpm.

and the nominal set of hook-loads H0 ∈ {420, 440} kN with a fixed surface an-
gular velocity Ω0 = 80 rpm. The frictional torque ratio is overall reduced with
the presence of the AST as compared with the results of the benchmark (BM)
model (for each hook-load value) as depicted in Figure 4.14. This indicates the
occurrence of more axial vibrations associated with the presence of the AST, such
that this can trigger lower contact force in the bit/rock interaction (in Eq. (4.13))
and lead to reduce the frictional torque in averaged sense (see Eq. (4.16)). In
Appendix B.3, we also provide comparisons on the averaged values of the force
ratios for each component in the bit/rock interaction between the BM and AST
models for supporting this indication.

4.3.3.2 Frictional Power Dissipation

The power loss Pf is defined as the quantity (with the unit of power) that reflects
the losses due to the frictional torque imposed on the PDC bit during its rotation.
In drilling interbedded formations, this quantity is defined for the kth layer as
follows:

Pfk =
〈
T fk · Φ̇

b
k

〉
. (4.46)

The averaged value of power losses Pf can also be assessed from Eqs. (4.39) and
(4.40).
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Figure 4.15 shows the comparison of the averaged power losses between the bench-
mark (BM, with solid line) and AST (dashed line) models for the same drilling
scenario applied in investigating the frictional torque ratio. Clearly, due to the
presence of the AST, the power loss decreases as compared with the results of
the benchmark (BM) model (based on the same hook-load value for each drilling
scenario). In [72], it is reported that the excessive amount of frictional torque can
lead to produce (thermally induced) damage on the bit. Hence, the simulation
cases show that the presence of the AST tool in the BHA will result in a reduction
of the average frictional torque (i.e., lower friction-induced heat loading on the
cutters).

4.4 Conclusions
In this study, we present the dynamic modeling of drill-string systems equipped
with the Anti-Stall Tool (AST) drilling in interbedded formations. A novel
bit/rock interface law involving the transitional phase between two distinct layers
couples the axial and torsional dynamics of the systems. The developed simula-
tion tool for the drill-string models is used to investigate the effect of the tool
on the total dynamics of drill-string systems in terms of response characteristics,
drilling performance and efficiency for some particular drilling cases in interbed-
ded formations.

Numerical analysis results have revealed that the AST tool significantly improves
the ROP and efficiency in drilling interbedded formation, which is also observed
in terms of mechanical specific energy (MSE). Including the AST in the drilling
system induces extra axial vibrations that cause less frictional contact in the
bit/rock interaction. Hence, this leads to less (frictional) dissipation on the bit
and thus potentially prolong the bit life-time (due to lower thermal loading of the
bit). Further research on the parametric study of AST involving higher modes of
axial and torsional vibrations and also drilling scenario in interbedded formations
is required to determine an optimal and robust tool design over a larger range of
operational conditions.



Chapter 5

Analysis of a downhole passive
regulator in drilling: a distributed
parameter system modeling
approach

Abstract1 - This chapter pursues a model-based investigation of the effect of a down-
hole passive regulator (AST) on the performance of a rotary drilling system. In this
work, the drill-pipe is represented as a continuum model in the form of partial dif-
ferential equations (PDEs), capturing all modes of axial and torsional dynamics; the
bottom-hole-assembly (BHA) is described by a discrete model governed by ordinary
differential equations (ODEs); and the evolution of the rock surface under the bit is
characterized by another PDE. These sub-systems are assembled and form a coupled
PDE-ODE-PDE system model. We perform simulation-based studies on the proposed
model for cases without and with the AST, and analyze the drilling performance in terms
of the nonlinear behavior of both drilling systems, particularly in terms of depth-of-cut
(rate-of-penetration) and drilling efficiency in the rock cutting process (torque-on-bit).
In addition, we also analyze the friction-induced loading on the drill-bit and the dynamic
loading on the drill-string. These numerical studies show that the use of the AST regu-
lator can assist to improve the drilling performance and to decrease both the frictional
loading on the bit and the dynamic loading on the string - this observation is robust
under a realistic parametric space of the drilling operations, the drill-string, and the
rock formation. Moreover, the robust performance - optimal AST design is investigated
using the proposed model.

1This chapter is based on: [16] A.G. Aribowo, U. J. F. Aarsnes, K. Chen, E. Detournay,
N. van de Wouw, “Analysis of a downhole passive regulator in drilling: a distributed param-
eter modeling approach", to be submitted to the Journal of Sound and Vibration. Related
preliminary results are reported in [15].
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5.1 Introduction
The AST technology developed by Tomax AS (a Norwegian-based drilling technol-
ogy company) has been widely used as a downhole passive regulator for improving
drilling performance in exploration and production activities of hydrocarbon re-
sources stored in deep subsurface rock formations [53, 158, 140, 141, 10]. The
field results reported in [26, 103, 99] have shown that application of such a down-
hole tool can bring economical benefits in executing drilling projects, particularly
by improving the drilling efficiency and rate-of-penetration (ROP) that leads to
reduced non-productive time (NPT).

Figure 5.1 shows the schematic of the AST basic design. Figure 5.2 visualizes
the working principle of the AST, where the AST is installed in the bottom-hole-
assembly (BHA) of the drill-string, i.e., in the green-colored section at the middle
(above the drill-bit).

To study the effect of the AST on drilling performance, modeling of a rotary
drilling system equipped with the AST has been started in [181], where the so-
called RGD model of drill-string dynamics proposed in [147] was used as the basis.
This extended RGD model with the AST considers that the drill-string is divided
into two parts, where the upper part is a lumped rigid body to represent mainly
the drill-pipe structure and the rig at surface, and the lower part is a lumped
section of BHA, including the drill-bit. The AST is modeled by an ideal linear
spring and a kinematic constraint of its helical spline (that couples the axial and
torsional dynamics of the drill-string), which connects the upper and lower parts.
In this model setup, the bit-rock interaction law developed in [58, 59] acts as the
bottom boundary conditions, which is mainly affected by two components: the
rock cutting process and the frictional contact between the rock surface and the
bit wearflat.

The lumped-parameter model of drill-string dynamics with the AST is then ex-
tended for drilling cases involving deviated wellbore trajectory in [187] and for
the case of drilling interbedded formations in [19]. In these studies, the influence
of the AST on drilling performance was studied numerically. In addition, the
modeling works in [55, 131] have considered the internal friction of the AST, par-
ticularly due to the frictional contact located on the mounted parts of the helical
spline.

The lumped-parameter (discrete) modeling approach (i.e., the RGD model) sim-
plifies the drill-string structure to a two-degrees-of-freedom (2-DOFs) dynamical
model, while neglecting all higher dynamical modes apparent in the long, slender
structure of the drill-pipes that can reach 1 − 10 km in length [147, 78, 27, 57].
To overcome this simplification, the continuum modeling approach of the drill-
string system is considered in [77], where the partial differential equations of the
drill-string axial and torsional dynamics are solved via the finite-element-method
(FEM). In [2, 5, 3, 6], a distributed parameter modeling approach was used to
study the multiple modes of the axial and torsional dynamics of the drill-string,
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Figure 5.1: The schematic design overview of the AST [30].
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Figure 5.2: The working principle of the downhole passive regulator AST installed
in the BHA [158, 140, 141].

which are coupled by the bit-rock interface law developed in [58, 59]. Moreover,
in the cutting component of the interface law, this work used a PDE to describe
the evolution of the depth-of-cut (DOC) [80], that is inspired by the study of the
regenerative effect in the metal cutting process [184]. In [4], this distributed model
of drill-string dynamics was extended to include an axial elastic tool (the so-called
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shock-sub) for studying its feasibility for a stabilizing effect on the dynamics.

The present work is motivated by the following findings from the prior studies:

1. The previous studies [77, 3, 6] have shown that higher-order modes can cause
instability and vibrations which are not captured by the low-order models,
e.g., the RGD model.

2. The topside boundary conditions, i.e., the top angular velocity and hook-
load, have a significant impact on both the stability of the drill-string system
and the limit-cycle signatures arising from instability [77].

3. Furthermore, it is reported that the effect of the AST on the increase of
axial instability in the drill-string system leads to higher performance in
terms of ROP and drilling efficiency as compared to the performance in
the benchmark model (the model without the AST) for drilling scenarios
in homogeneous formation [181] as well as in interbedded formation [19].
These results indicate that more torque is used for the cutting process (e.g.,
lower mechanical-specific-energy (MSE)) and that lower frictional loading
occurs on the drill bit in drilling processes with the use of the AST.

4. The study [19] has also revealed that the heterogeneity of rock formations
is indicated as a more dominant factor affecting the steady-state responses
of drill-string dynamics.

In this work, we derive dynamic models of rotary drilling systems without and with
the AST (here referred to as the benchmark (BM) and AST distributed models,
respectively) by employing the distributed-parameter approach presented in [2,
5, 3]. Moreover, we consider the (set-valued) bit-rock interface law developed in
[59, 17] for the case of homogeneous rock properties and the PDE-based evolution
of the depth-of-cut in [80] is used for the interface law.

Given these findings, we intend to assess whether the distributed model response
of the drill-string with the AST is still possessing the same tendency (i.e., con-
sistent results in terms of increasing drilling performance) as observed in the
lumped-parameter (lower-dimensional) model in [181, 187, 19]. In addition, if the
performance improvement with the use of the AST can be shown via the numeri-
cal studies, it is also interesting to explore how to optimize the design of the AST
for performance.

The main contributions of this work can be summarized as follows:

1. Firstly, we derive distributed models of drill-string dynamics without and
with the AST in the form of a coupled PDE-ODE-PDE system.

2. Secondly, we investigate and compare the steady-state responses of both
models, particularly under a set of operational drilling parameters (imposed
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as the topside boundary conditions), to reveal the impact of the AST on
the distributed dynamics.

3. Thirdly, the effect of the AST on drilling performance in terms of rate-
of-penetration is investigated by comparing the averaged steady-state re-
sponses of these two models. In addition, the frictional loading on the bit
and the dynamic loading on the drill-string on both models are also studied
as additional performance metrics.

4. Finally, a parametric study on the AST design parameters (the stiffness and
the lead angle of the helical spline), including their robustness, is performed
under the variation of characteristic parameters of the drill-string (i.e., its
length), the physical properties of rock formations (soft vs hard rocks), and
the operational drilling parameters.

The remainder of this chapter is structured as follows: Section 5.2 presents the dis-
tributed parameter models of rotary drilling systems without and with the AST.
Section 5.3 details the numerical method for analyzing the resulting (set-valued)
PDE-ODE-PDE models. Dynamic analyses of both models and a parametric
study on the robust performance-optimal AST design are presented in Section
5.4 and 5.5, respectively. Conclusions are drawn in Section 5.6.

5.2 Distributed parameter models of drilling
systems without and with AST

This section details the coupled PDE-ODE-PDE system for the BM and AST
models as depicted in Figures 5.3 and 5.4, respectively. The drill-string system in
both models is divided into two main parts, namely the drill-pipe (upper) and the
BHA (lower) parts. The upper part mainly represents the long-slender structure
of the drill-pipe and the rig where the operational drilling parameters are imposed
(here also referred as the drill-pipe model). The lower part is mainly for the BHA
(i.e., drill-collar, stabilizers, and other downhole components such as the AST)
and the drill-bit with the bit-rock interface law (here also referred as the BHA
model).

First, we present the distributed-parameter model developed for the drill-pipe
parts of both BM and AST models. Second, we describe the lumped-parameter
models for the BHA parts of both models for a drilling scenario in vertical wellbore
with homogeneous rock formation - see the zoomed parts in Figures 5.3 and 5.4.
In both models, the drill-pipe and BHA are coupled through a rigid interface, i.e.,
located at the drill-collar (the top part of the BHA).
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Figure 5.3: Schematic overview of the drill-string without the AST (benchmark
(BM) model) in a vertical well-bore (left). The zoomed schematic of the lower
part of the drill-string (BHA), including the drill-bit (right).

5.2.1 The distributed model of the drill-pipe (the upper
part of drill-string)

On the basis of earlier works in [77, 2, 5, 3], the dynamics of the drill-pipe for
both BM and AST models in Figures 5.3 and 5.4, respectively, are modeled with
the wave equations. Hereto, two sets of (first-order linear hyperbolic) PDEs of
the axial and torsional dynamics of the drill-pipes in both models are considered
and detailed as follows.

First, let the state variables V (t, x), W (t, x) denote the axial velocity and the
applied weight (axial force) of the drill-string system, respectively, where (t, x) ∈
[0,∞) × [0, L] with the time variable t, the spatial (axial) coordinate x and the
drill-pipe length L. Likewise, in torsional direction we denote the state variables
Ω(t, x) and T (t, x) as the angular velocity and the applied torque, respectively.
The variable U(t, x) and Φ(t, x) are the axial and angular displacements in the
pipe, respectively, such that the axial and angular velocities are given by ∂U(t,x)

∂t =
V (t, x) and ∂Φ(t,x)

∂t = Ω(t, x), respectively.

Second, in the axial dynamics of the drill-pipe, the applied weight is related to
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Figure 5.4: Schematic overview of the drill-string equipped with the AST (AST
model) in a vertical well-bore (left). The zoomed schematic of the lower part of
the drill-string (BHA, AST), including the drill-bit (right).

the axial strain in the pipe as the local relative compression:

W (t, x) = −AE∂U(t, x)
∂x

= AE
(U(t, x)− U(t, x+ δx))

δx
, (5.1)

where δx is an infinitesimal increment of the axial position. The drill-pipe pa-
rameters for the axial dynamics consider the cross-sectional area of the drill-pipe
element A and the Young’s modulus E. Therefore, the partial differential equa-
tions (PDEs) for the axial dynamics of the upper part are then given by

∂W (t, x)
∂t

+AE
∂V (t, x)
∂x

= 0, (5.2a)

Aρ
∂V (t, x)
∂t

+ ∂W (t, x)
∂x

= −kaρAV (t, x), (5.2b)
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where Eqs. (5.2a) and (5.2b) are based on the elasticity relationship in Eq. (5.1)
and the Newton’s second law, respectively. The parameter ρ is the pipe mass
density and the damping coefficient ka represents the effect of viscous dissipation
(shear stresses, structural damping) in the axial direction.

For the torsional dynamics of the drill-pipe, the torque is proportional to the
shear strain in the pipe (i.e., twist per unit length) according to the elasticity:

T (t, x) = −JG∂Φ(t, x)
∂x

= JG
(Φ(t, x)− Φ(t, x+ δx))

δx
. (5.3)

The drill-pipe parameters for the torsional dynamics consider the polar moment
J and the shear modulus G. The PDEs for the torsional dynamics of the upper
part can then be written as follows:

∂T (t, x)
∂t

+ JG
∂Ω(t, x)
∂x

= 0, (5.4a)

Jρ
∂Ω(t, x)
∂t

+ ∂T (t, x)
∂x

= −ktρJΩ(t, x). (5.4b)

Eqs (5.4a) and (5.4b) are derived based on Eq. (5.3) and the Newton’s second
law, respectively. The damping coefficient kt represents the combined effect of
the shear stress and structural damping in the torsional direction.

5.2.1.1 Boundary conditions of the drill-pipe models

The top boundary conditions for the PDEs (of the axial and torsional dynamics
of the upper part of the drill-string) in Eqs. (5.2a) – (5.2b) and Eqs. (5.4a) –
(5.4b) are based on the drilling operational parameters applied on the drilling rig
as follows:

W (t, x = 0) = −H0, (5.5a)
Ω(t, x = 0) = Ω0, (5.5b)

where H0 is the hookload applied by the hoisting system and Ω0 is the top angular
velocity imposed by the rotary table system of the rig. Moreover, at the bottom
of the drill-pipe (i.e., at the rigid interface with the BHA at the depth x = L; see
Figure 5.3 and 5.4), the kinematic boundary conditions are given by

V (t, x = L) = VL, (5.6a)
Ω(t, x = L) = ΩL, (5.6b)

where the velocities VL and ΩL are, respectively, the axial and torsional velocities
at the interface.
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5.2.2 The lumped model of the BHA (the lower part of
drill-string)

The dynamics of the lumped BHA parts of both BM and AST models are modeled
in terms of ordinary differential equations (ODEs) following the discrete models
developed in [187, 19]. These ODEs for the axial and torsional dynamics of the
BHA parts in both models are coupled with the reactive forces and torques due
to the bit-rock interaction in [59, 17]. In addition, the depth-of-cut evolution in
the rock cutting process of this bit-rock interaction is described by a PDE [80].

In this section, firstly, we summarize the bit-rock interface law and the equation
governing the evolution of the rock cutting. Secondly, the lumped-parameter
models for the BHA parts of both BM and AST models (as a coupled system
with the interface law) are presented.

5.2.2.1 Bit-rock interface law

The bit-rock interaction is essentially composed of two fundamental processes,
namely the frictional contact at the interface of the bit wearflat and rock surface
and the rock cutting process [59]. Total contributions of each component in the
bit-rock interaction into the weight and torque acting on the bit, respectively, are
as follows:

Wb = Wf +Wc, (5.7a)
Tb = Tf + Tc. (5.7b)

The subscripts f and c are used for the frictional and the cutting components of
the interaction, respectively, while the subscript b denotes the variable at the bit.
The bit velocities for the axial and torsional directions are denoted by Vb and Ωb,
respectively.

Frictional contact (set-valued force laws) The weight-on-bit (WOB) and
torque-on-bit (TOB) due to the frictional contact between the bit and rock are
given, respectively, by the following inclusions on velocity level [17]:

Wf ∈ nσ a `n g (Vb) , (5.8a)

Tf ∈
1
2µa ξWf Sign (Ωb) , (5.8b)

with σ the normal contact stress, `n the wearflat length (per blade), a the bit
radius, n the number of the bit blades, µ the friction coefficient, and g (y) is a
set-valued function defined as
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Figure 5.5: The bit profile (top) and the depth-of-cut evolution in the bit-rock
interaction (bottom) after [80, 3].

g (y) := 1
2 (1 + Sign (y)) with Sign (y) :=

 1
[−1, 1]
−1

,
y > 0
y = 0
y < 0

. (5.9)
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The bit-design parameter ξ representing the distribution of the wearflat is ex-
pressed as

ξ := 2
1∫

0

r

√
(f ′ (r))2 + 1 dr, (5.10)

with a (dimensionless) bit profile function f(·) [59, 17]. In Figure 5.5 (left), a
radial coordinate R on the bit is considered as the radial distance of a point
located along the curve of the blade profile C from the bit axis of symmetry (i.e.,
0 ≤ R ≤ a). Here the bit profile is considered as a parabolic function, i.e.,
f(r) = azr

2 for a positive constant az and a (dimensionless-scaled) bit radius
r = R/a with 0 ≤ r ≤ 1. The bit parameter ξ in Eq. (5.10) is associated to
the orientation of the contact force on the wearflat with respect to the bit profile
f (r).

Cutting process The WOB and TOB due to the cutting process are given,
respectively, by

Wc = a ζ∗ ε d, (5.11a)

Tc = 1
2a

2εd, (5.11b)

with ε the intrinsic specific energy of the rock and d the total depth-of-cut. The
bit-design parameter representing the orientation of the cutting force is repre-
sented by ζ∗ = ζϑζ with a positive constant ζ and

ϑζ :=
1∫

0

1√
(f ′ (r))2 + 1

dr, (5.12)

following [59, 17]. The evolution of the rock cutting process (with a single bit
blade) can be described by the following transport equation [80]:

∂Υ(t, θ)
∂t

+ Ωb(t)
n

2π
∂Υ(t, θ)
∂θ

= Vb(t) (5.13)

with its evolution state variable Υ(t, θ) that represents the depth of uncut rock
at the angular position θ relative to the axial bit position at time t, see Figure
5.5. The angular position θ ∈ [0, 1] is the (normalized) angle between an arbitrary
surface point on the rock (at a blade) and the reference (next) blade, i.e., initiated
at θ = 1 and at θ = 0 after a rock cutting evolution. Herein, the following
boundary condition holds:

Υ(t, θ = 0) = 0. (5.14)
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The depth-of-cut (DOC) produced by a single blade of the drill-bit is then given
by

dn(t) = Υ(t, θ = 1) (5.15)
Subsequently, the total depth-of-cut produced by all n identical blades is

d = ndn(t). (5.16)

5.2.2.2 The lumped-parameter models of the BHA dynamics

The BHA (lower) parts of the drill-string dynamics are modeled as the lumped-
parameter models depicted in Figure 5.6 for the BM model (in left) and for the
AST model (in right). These lumped-parameter models of each drill-string system
are later to be coupled with the PDEs in Eqs. (5.2a) – (5.2b) and Eqs. (5.4a) –
(5.4b) for both axial and torsional dynamics, respectively, of the drill-pipe. We
write the equations-of-motion (EOMs) of both lumped-parameter models for the
BHA parts into the following generic form:

Mq̈ −H(t,q, q̇) = Wλ, (5.17)
with the mass matrix M, the generalized smooth forces column H, the non-smooth
forces column λ and the associated force direction matrix W. The generalized
coordinate vector is denoted by q.

BM model In the BM model, the BHA is essentially represented by a lumped
section including the drill-bit and the bit-rock interface law in Section 5.2.2.1
plays as its bottom boundary conditions. The generalized coordinates q of the
BHA part in the BM model are given by q =

[
Ub Φb

]> where the axial and
torsional displacements at the bit are denoted by Ub and Φb, respectively. Note
that we use the notation Vb = U̇b and Ωb = Φ̇b for the bit axial and torsional
velocities, respectively. Herein, the matrices of the EOMs in Eq. (5.17) for the
BHA dynamics of the BM model in Figure 5.6 (left) are given by

M =
[
M 0
0 I

]
, (5.18a)

H =
[
WL +Wg −Wc

TL − Tc −DφΩb

]
, (5.18b)

W =
[

1 0
0 1

]
, (5.18c)

λ =
[
λa λt

]>
, (5.18d)

with M the total mass of the BHA, I the total inertia, and Dφ the torsional
damping coefficient representing the viscous friction terms along the BHA. Herein,
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Figure 5.6: The lumped-parameter models of the BHA (lower) parts, including
the drill-bit, of drill-string systems for the BM model (top) and the AST model
(bottom).

Wg = Mg is the total BHA weight and g is the gravitational acceleration. For
the non-smooth component, the force λa = −Wf and the torque λt = −Tf abide
by the inclusions in Eqs. (5.8a) and (5.8b), respectively. The force WL and the
torque TL are the interaction forces acting at the interface between the drill-pipe
and BHA parts of the drill-string system. The cutting component of the bit-rock
interaction follows Eq. (5.11a) and Eq. (5.11b) for the weight Wc and the torque
Tc, respectively.

Following the schematic of the BHA (lower) part for the BM model in Figure 5.6
(left), the axial and torsional displacements for the bottom side of the drill-pipe
part are denoted by UL and ΦL, respectively. As the drill-pipe and BHA parts
of the drill-string system are rigidly interconnected at the interface located at
the spatial coordinate x = L, this condition implies that the bottom side of the
drill-pipe is kinematically connected to the BHA, and, consequently, the following
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kinematic relations at the interface hold:

UL = Ub, (5.19a)
ΦL = Φb. (5.19b)

On velocity level, this kinematic condition also implies the boundary conditions
for the PDEs of the drill-pipe in Eqs. (5.6a) – (5.6b) as follows:

V (t, x = L) = Vb, (5.20a)
Ω(t, x = L) = Ωb. (5.20b)

In addition, the interaction forces at the interface are also coupled with the state
variables of the drill-pipe distributed model as follows:

W (t, x = L) = WL, (5.21a)
T (t, x = L) = TL. (5.21b)

AST model In the AST model, the lumped model of the BHA part is divided
into two lumped sections, which are connected by the AST. The bit-rock interface
law acts as the bottom boundary condition of the lumped section below the AST
– where the drill-bit is mounted. The generalized coordinates q of the BHA
part in the AST model are given by q =

[
UL Ub Φb

]>. The axial and
torsional displacements for the lumped BHA section above the AST are UL and
ΦL, respectively, see Figure 5.6 (right). Note that we also use the notations
VL = U̇L and ΩL = Φ̇L for the velocities of this lumped section above the AST.
The matrices of the EOMs in Eq. (5.17) for the BHA dynamics of the AST model
in Figure 5.6 (right) are given by

M =

 Ma + Ia

α2 − Ia

α2
Ia

α

− Ia

α2 Mb + Ia

α2 − Ia

α
Ia

α − Ia

α Ia + Ib

 , (5.22a)

H =

 −Db(VL − Vb)−Kb (UL − Ub) +WL +Wag + 1
α (TL −Dφa

ΩL)
Db(VL − Vb) +Kb (UL − Ub) +Wbg −Wc + 1

α (DφaΩL − TL)
TL − Tc −Dφa

ΩL −Dφb
Ωb

 ,
(5.22b)

W =

 0 0
1 0
0 1

 , (5.22c)

λ =
[
λa λt

]>
. (5.22d)

The mass Ma and the inertia Ia lump the BHA section above the AST, and the
torsional damping coefficient Dφa is the viscous terms for this BHA section. In
addition, the mass Mb and the inertia Ib are for the lumped section below the
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AST, with the torsional damping coefficient Dφb
as the viscous terms along this

section. The weights Wag = Mag and Wbg = Mbg are the weights for the BHA
sections above and below the AST, respectively.

The AST consists of an internal spring with a stiffness Kb, a structural damping
Db, and a (holonomic) kinematic constraint (due to the helical spline in the AST)
that couples the axial and torsional kinematics of the BHA. This constraint is
accounted as follows (written on velocity level):

(VL − Vb) = psp
2πrsp

(rspΩL − rspΩb) , (5.23)

or alternatively on position level as follows:

hb(q) := α (ΦL − Φb)− (UL − Ub) = 0, withα = psp
2π , psp = 2πrsp tan β. (5.24)

The lead psp is a function of the lead angle β and the spline radius rsp [181, 187,
19]. Based on the BHA schematic for the AST model in Figure 5.6 (right), the
lumped BHA section above the AST is set to be kinematically connected to the
bottom side of the drill-pipe at the interface located at the spatial coordinate
x = L. This implies the following boundary conditions of the drill-pipe in Eqs.
(5.6a) – (5.6b) (on velocity level):

V (t, x = L) = VL, (5.25a)
Ω(t, x = L) = ΩL. (5.25b)

Besides, the interaction force WL and torque TL at the interface between the
bottom side of the drill-pipe and the lumped BHA section above the AST are also
coupled with the state variables of the drill-pipe distributed model and exactly
following Eqs. (5.21a) – (5.21b).

Now, we have presented the distributed model of the drill-pipe part and the
lumped models of the BHA part for both the BM and AST models, which include
the depth-of-cut evolution (produced by the drill-bit) in the form of a PDE in the
bit-rock interface law. The combination of these models of the drill-pipe dynamics,
BHA dynamics and the depth-of-cut evolution results in two coupled PDE-ODE-
PDE systems for the axial and torsional drill-string dynamics without and with
the AST. Besides, a non-smooth (set-valued) formulation for the frictional contact
at the bit is included in the reacting forces and torques of the bit-rock interface
law for both coupled models.

In the following section, we will detail the numerical scheme used to solve this
type of set-valued PDE-ODE-PDE model.
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5.3 Numerical scheme
In this section, we present the numerical scheme employed to solve the coupled
PDE-ODE-PDE systems of equations for both BM and AST models presented
in the previous section. Note that such numerical analysis is challenged by the
combined infinite-dimensional and set-valued nature of the dynamics. In support
of numerical computations, we first pursue a coordinate transformation in the
next section.

5.3.1 Riemann invariants
The wave equations of the drill-pipe dynamics in Eqs. (5.2a) - (5.2b) and Eqs.
(5.4a) - (5.4b) are numerically solved by first transforming them into a formu-
lation involving their Riemann invariants. This transformation decouples the
interconnection between the states in the original PDEs and thus results in four
1-D transport (advection) equations which can be solved by a finite-difference
method (i.e., first-order upwind scheme [3, 4]). We introduce the following Rie-
mann invariants as the function of the state variables for the axial dynamics of
the drill-pipe:

αa(t, x) = V (t, x) + ca
AE

W (t, x), (5.26a)

βa(t, x) = V (t, x)− ca
AE

W (t, x), (5.26b)

with the axial wave speed ca =
√

E
ρ , and for the torsional dynamics of the drill-

pipe:

αt(t, x) = Ω(t, x) + ct
JG

T (t, x), (5.27a)

βt(t, x) = Ω(t, x)− ct
JG

T (t, x), (5.27b)

with the torsional wave speed ct =
√

G
ρ . Note that the Riemann invariants αi for

i ∈ {a, t} are the downward traveling waves for both axial and torsional dynamics
of the drill-pipe, while the Riemann invariants βi are the upward traveling waves.

5.3.1.1 PDEs of the drill-pipe dynamics in terms of Riemann invari-
ants.

For the axial dynamics, we write the PDEs in Eqs. (5.2a) – (5.2b) in terms of
Riemann invariants as follows:

∂αa(t, x)
∂t

+ ca
∂αa(t, x)

∂x
= −Sa(t, x), (5.28a)

∂βa(t, x)
∂t

− ca
∂βa(t, x)

∂x
= −Sa(t, x), (5.28b)
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with the associated source term,

Sa(t, x) = ka
2 (αa(t, x) + βa(t, x)) . (5.29)

As for the torsional dynamics, the PDEs in Eqs. (5.4a) – (5.4b) in terms of
Riemann invariants are given by

∂αt(t, x)
∂t

+ ct
∂αt(t, x)
∂x

= −St(t, x), (5.30a)

∂βt(t, x)
∂t

− ct
∂βt(t, x)
∂x

= −St(t, x), (5.30b)

with the associated source term,

St(t, x) = kt
2 (αt(t, x) + βt(t, x)) . (5.31)

5.3.1.2 Boundary conditions in terms of Riemann invariants.

For the top boundary conditions in Eqs. (5.5a) - (5.5b) in terms of Riemann
invariants and considering Eqs. (5.26a) – (5.27b), we read

αa(t, x = 0) = − 2ca
AE

H0 + βa(t, x = 0), (5.32a)

αt(t, x = 0) = 2Ω0 − βt(t, x = 0). (5.32b)

For the bottom boundary conditions in Eqs. (5.6a) - (5.6b) in terms of Riemann
invariants, we write

βa(t, x = L) = 2VL − αa(t, x = L), (5.33a)
βt(t, x = L) = 2ΩL − αt(t, x = L). (5.33b)

5.3.2 The upwind scheme for the PDEs

The PDEs of the drill-pipe dynamics in terms of Riemann invariants in Eqs.
(5.28a) – (5.31) and the PDE of the rock cutting evolution in Eq. (5.13) are
hyperbolic PDE systems, which can be solved numerically via a finite-difference
method, namely the first-order upwind scheme. To describe this scheme, let
consider a generic form of a non-homogeneous transport equation as follows:

γ̄t + c̄γ̄x = S(t, x), (5.34)

with the subscripts x and t denoting for the spatial and time partial derivatives,
respectively, of the state variable γ̄, a wave propagation speed c̄, and a source
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term S. We perform a first-order discretization on Eq. (5.34) as follows:

γ̄n+1
p = γ̄np − c̄

∆t̄
∆x̄

(
γ̄np − γ̄np−1

)
+ Snp∆t̄, for c̄ > 0, (5.35a)

γ̄n+1
p = γ̄np + c̄

∆t̄
∆x̄

(
γ̄np+1 − γ̄np

)
+ Snp∆t̄, for c̄ < 0, (5.35b)

as the standard first-order upwind scheme with the grid index n and p for the
temporal and spatial domains, respectively. The increments of the axial position
and time are denoted by ∆x̄ and ∆t̄, respectively.

5.3.3 The time-stepping scheme for the BHA model

For solving the ODEs of the BHA dynamics in both BM and AST models, we
rewrite the EOMs in Eq. (5.17) into a velocity-level form and apply first-order
discretization on its velocity coordinates (based on Moreau’s midpoint rule for
the time-stepping scheme [165]) as follows:

uE = M−1 (HM + WMλ
)

∆t+ uB , (5.36)

In the form of Eq. (5.36), the velocity vectors for the BM and AST models
at the discrete time instant tj are denoted by uj =

[
V jb Ωjb

]> and uj =[
V jL V jb Ωjb

]>, respectively, for j ∈ {B,E}. We consider a timestep ∆t =
tE − tB > 0, of which the superscripts B and E denote the begin and end points,
respectively. In Eq. (5.36), the generalized smooth forces column HM and the
nonsmooth force direction matrix WM , respectively, are given by

HM := H(tM ,qM ,uB), (5.37a)
WM := W(tM ,qM ), (5.37b)

which are approximated at the (mid-step) time instant tM = tB + ∆t
2 . Note that

we also use the notations uB = q̇B for the generalized velocity vector in Eq.
(5.36). The generalized coordinate vector at the mid-step time instant is denoted
by

qM = qB + uB ∆t
2 . (5.38)

Note that the mass matrix M in Eq. (5.36) is not necessarily a diagonal matrix.
Hereto, we can rewrite the discretized EOMs in Eq. (5.36) as follows:

uE =
adj (M)

(
HM + WMλ

)
∆t

det (M) + uB , (5.39)
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where adj (M) and det (M) are the classical adjoint (adjugate) and the determi-
nant of the mass matrix M, respectively. In solving for the kinematic responses,
we substitute the associated matrices in Eqs. (5.18a) – (5.18d) for the BM model
into Eq. (5.36). For the AST model, we refer to the matrices in Eqs. (5.22a) –
(5.22d).

In this scheme, the inclusions in Eqs. (5.8a) - (5.8b) for the contact force λa
and the frictional torque λt of the bit-rock interaction are stored in the vector
λ =

[
λa λt

]> in Eqs. (5.36) – (5.39) and can be rewritten equivalently as the
following implicit proximal point equations [104]:

λa = proxCa
(λa − raVb) , (5.40a)

λt = proxCt
(λt − rtΩb) . (5.40b)

These proximal point formulations can be solved by an iterative technique [165],
e.g., JOR scheme, with the parameters ra and rt being strictly positive constants
and the associated convex sets being defined as follows:

Ca := {λa | −nσ a `n ≤ λa ≤ 0} , (5.41a)

Ct :=
{
λt |

1
2µa ξ λa ≤ λt ≤ −

1
2µa ξ λa

}
. (5.41b)

Please also refer to [19] for the details on this time-stepping scheme implemen-
tation for solving the drill-string dynamics, in the scope of a lumped-parameter
modelling approach.

5.3.4 The interconnection of the drill-pipe and BHA
dynamics

For both the BM and AST models, we construct the interconnection of the sub-
systems models of the drill-string at an interface between the bottom side of
the drill-pipe (the upper part) and the top side of the BHA (the lower part).
In this section, we first describe the kinematic and dynamic interconnections at
the interface for both BM and AST models, in which the information of each
sub-system obtained from the implementation of the numerical schemes detailed
in the previous sections are exchanged. Second, we present the workflow of the
numerical solver used for this type of coupled PDE-ODE-PDE system of both
models.

5.3.4.1 BM model

In the benchmark model, the dynamic interconnection at the interface possesses
the kinematic conditions in Eqs. (5.20a) – (5.20b). Since the BHA, including the
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drill-bit, is assumed to be a rigid body, this kinematic constraint implies that the
velocities at the interface are equal to the bit velocities (see also Figure 5.6 – left).
Note that the bit velocities are obtained by solving the BHA dynamics in Eqs.
(5.36) – (5.39) via the time stepping scheme. Hereto, these kinematic conditions
are written as follows (at the end of a time-stepping step):

V (t, x = L) = VL = V Eb , (5.42a)
Ω(t, x = L) = ΩL = ΩEb . (5.42b)

These kinematic conditions are essential for updating the boundary conditions
of the PDEs of the drill-pipe dynamics (in terms of Riemann invariants) in Eqs.
(5.33a) – (5.33b) based on the latest conditions of the BHA dynamics. These
updates are used in solving the PDEs in Eqs. (5.28a) – (5.31) for the responses
of the drill-pipe dynamics via the upwind scheme in Section 5.3.2.

On the other hand, the interaction force WL and torque TL at the interface are
required as the inputs of the BHA dynamics; see in Eq. (5.17) with the associated
matrices for the BM model in Eqs. (5.18a) – (5.18d). Updating the force and
torque at the interface requires the latest boundary conditions of the PDEs of
the drill-pipe dynamics. Thus, they can be updated in terms of the Riemann
invariants in Eqs. (5.26a) – (5.27b) (after a time step) in the following way:

WL = (αa(t, x = L)− βa(t, x = L)) AE2ca
, (5.43a)

TL = (αt(t, x = L)− βt(t, x = L)) JG2ct
. (5.43b)

Moreover, the PDE of the depth-of-cut evolution in Eq. (5.13) is also solved via
the upwind scheme (in Section 5.3.2) while incorporating the latest conditions of
the BHA dynamics. The evolution state variable is updated as follows:

Υn+1
p = Υn

p − ΩEb
n

2π
∆t̄
∆θ

(
Υn
p −Υn

p−1
)

+ V Eb ∆t̄, for ΩEb ≥ 0, (5.44)

with ∆t̄ and ∆θ as the increments of the time and the normalized angular position
θ in the cutting process evolution, respectively. In this work, we do not consider
the backward rotation of the drill-bit. The total depth-of-cut produced by the
drill-bit is calculated via Eq. (5.15) – (5.16) by incorporating this latest evolution
state obtained in Eq. (5.44). This total depth is then used for updating the
reaction force and torque of the cutting component in the interface laws in Eqs.
(5.11a) – (5.11b), which are required for solving the BHA dynamics in Eq. (5.17).

5.3.4.2 AST model

In the model with AST, we also have the kinematic condition at the interface
between the drill-pipe and the lumped section of BHA above the AST in Eqs.
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(5.25a) – (5.25b). Following the kinematic condition of the BM model in Eqs.
(5.42a) – (5.42b), the kinematic condition at the interface of the AST model
implies that the velocities at the interface are equal to the velocities of the lumped
BHA section above the AST (see also Figure 5.6 – right).

Note that in the AST model, as with the bit velocities, the velocities of the lumped
BHA section above the AST are obtained by both solving the BHA dynamics in
Eqs. (5.36) – (5.39) (via the time stepping scheme, with the associated matrices
in Eqs. (5.22a) – (5.22d)) and utilizing the kinematic constraint in Eqs. (5.23) –
(5.24). Hence, we have the following kinematic conditions at the interface of the
AST model:

V (t, x = L) = V EL , (5.45a)
Ω(t, x = L) = ΩEL . (5.45b)

The axial velocity at the interface, V EL , is calculated via Eq. (5.39), i.e., as the
first element of the vector uE . While the angular velocity at the interface is
calculated via the kinematic constraint in Eq. (5.23) as follows:

ΩEL = ΩEb +
(
V EL − V Eb

)
α

. (5.46)

Furthermore, in the AST model, the interaction force WL and torque TL at the
interface are calculated in the same way as for the BM model by following Eqs.
(5.43a) – (5.43b) with the Riemann invariants in Eqs. (5.26a) – (5.27b). In
addition, the depth-of-cut evolution for the AST model is also solved by utilizing
Eq. (5.44) as in the BM model.

In overall, these BM and AST models (in terms of a coupled PDE-ODE-PDE
system) allow us to capture the multiple modes of axial and torsional oscillations
of the long drill-pipe structure and also to interconnect them with the BHA dy-
namics incorporating the nonlinearity due to the frictional contact and the delay
(regenerative) effect of the cutting process at the bit-rock interface.

5.3.4.3 Workflow of the numerical solver

Algorithm 5.1 describes the workflow for numerically solving the coupled PDE-
ODE-PDE system of the BM and AST models. Moreover, the steady-state so-
lutions derived in Appendix C.1 are also used for the initial conditions in the
numerical solvers of these models.

In the next section, we will provide practically representative, illustrative numeri-
cal examples for investigating the effect of the AST on drilling performance under
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the influence of multiple modes of axial and torsional dynamics of the drill-pipe
structure.
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Algorithm 5.1 Pseudo code for the numerical solver for the coupled PDE-ODE-
PDE system of the BM and AST models.

Input: Initial conditions & parameter settings for the PDEs and ODEs
Input: Simulation parameters (final simulation time, spatial cell size (spatial
discretization)) . the CFL condt.

for i = 1 : n do . n: number of temporal discretization based on the CFL
condt.

1) Calculate the Riemann invariants at the top (x = 0)
using the top BCs (V0,Ω0), see Eqs. (5.32a) - (5.32b).
2) Update the interaction forces at the interface (WL, TL) using the latest
Riemann invariants, see Eqs. (5.43a) - (5.43b).

Solve the BHA dynamics in Eq. (5.17)
3) Update the total depth-of-cut in Eqs. (5.15) - (5.16) based on
the latest evolution state in Eq. (5.44).
4) Solve the proximal point of the frictional component
in Eqs. (5.40a) - (5.40b) using the JOR scheme.
5) Solve the EOMs in Eq. (5.39) using the time-stepping scheme
with the Moreau’s midpoint method.
6) Update the bit velocities (V Eb ,ΩEb ) and the interface velocities (VL, ΩL),
using Eqs. (5.42a) - (5.42b) for the BM model
and Eqs. (5.45a) - (5.46) for the AST model.
7) Update the WOB and TOB due to bit/rock interaction (Wb, Tb)
in Eqs. (5.7a) - (5.7b).

Update the interface condition:
8) Update the Riemann invariants at the interface (x = L)
in Eqs. (5.33a) - (5.33b) using VL and ΩL

Solve the PDEs of the drill-pipes and rock surface evolution:
9) Solve the PDEs of the drill-pipe in Eqs. (5.2a) - (5.4b)
with the upwind scheme in Eqs. (5.35a) - (5.35b)
10) Solve the PDE for the depth-of-cut evolution in Eq. (5.13)
with the upwind scheme in Eq. (5.35a)

Update for the next iteration, including for the interface:
11) Update the time step: tBk = tBk + ∆ts
12) Update the bit velocities (V Bb = V Eb and ΩBb = ΩEb )
using the latest solutions of the BHA dynamics
13) Update the bit positions (UBb = UEb and ΦBb = ΦEb )
14) Update the axial and angular positions at the inteface (UL,ΦL)
with the associated velocities (VL,ΩL)

end for

Store all the state variables for response plotting
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5.4 Dynamic analyses of drill-string dynamics
without and with the AST

In this section we present the simulation results of the BM and AST models. In
particular, we focus on the following aspects:

1. Comparison of the steady-state responses between the BM and AST models,

2. Comparison of the time-averaged steady-state responses of both models to
evaluate drilling performance, the contact forces (frictional loading at the
bit) and the torque-on-interface (TOI; representing the dynamic loading on
the drill-string) under variation of the drilling operational parameters.

For the numerical simulations, we consider the system parameters used in the
earlier works in [187, 3, 192, 19].

5.4.1 Effect of the AST on the drilling performance

In this subsection, we analyze first the characteristics of the dynamic responses of
both BM and AST models. Second, we continue the investigation of the effect of
the AST on drilling performance in terms of rate-of-penetration, drilling efficiency
and frictional loading at the bit.

5.4.1.1 The dynamic response of the BM and AST models

Figure 5.7 depicts the steady-state responses of the axial velocities at the bit for
the BM model (on top side) and the AST model (on bottom side) for hookload
H0 = 56.6 kN and top-drive angular velocity Ω0 = 60 rpm. Figure 5.8 shows
the angular bit velocity responses of the BM and AST models in the steady-state
region. The black dashed lines in all responses show the averaged magnitudes of
the velocities for both BM and AST models.

In general, the steady-state responses of both BM and AST distributed mod-
els exhibit axial and torsional limit-cycles, with a stick-slip phenomenon in the
axial dynamics. This limit cycling behavior is induced by the fact that the nom-
inal (constant angular and axial velocities) solution is unstable. These periodic
responses are dominated by lower dynamic modes of the axial and torsional dy-
namics in both models. By comparing these responses for each model, the limit-
cycles in the AST model show higher frequency contents than the limit-cycles in
the BM model.

Furthermore, Figure 5.7 shows that the presence of the AST increases the ROP.
The peak values of the axial bit velocity response in the AST model are up to
three times the peak values of the axial vibrations in the BM model. These
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Figure 5.7: The axial dynamic response of the distributed models of drill-string
without AST (BM model - top) and with AST (AST model - bottom) with drilling
operational parameters: hookload H0 = 56.6 kN and top-drive angular velocity
Ω0 = 60 rpm.

findings suggest that stronger axial vibrations are induced due to the presence
of AST and these significantly affect the drilling performance (i.e., higher ROP).
As a remark, these results are inline with the conclusions presented in the earlier
works in [181, 187, 19] on low-order lumped-parameter models.

5.4.1.2 Comparison of frictional contact at the bit between the BM
and AST models

Figure 5.9 shows the comparison of the contact force responses between the BM
and AST models (see Eq. (5.18d) or Eq. (5.22d)). The black dashed lines in both
responses show the averaged magnitudes of the contact forces for both BM and
AST models.

First, this comparison shows that the stronger axial vibrations induced by the
AST result in a lower averaged contact force at the bit (in Eq. (5.8a)) for the
AST model. As indicated in Figure 5.9, the averaged magnitude of the contact
force for the AST model shows about 25% reduction compared to the BM model.
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Figure 5.8: The torsional dynamic responses of the distributed models of drill-
string without AST (BM model - top) and with AST (AST model - bottom) with
drilling operational parameters: hookload H0 = 56.6 kN and top-drive angular
velocity Ω0 = 60 rpm.

This effect arises because the AST leads to longer axial sticking periods (see Figure
5.7), during which that axial contact force Wf can be lower than its maximum
value (which is always attained during axial slip periods); see the set-valued force
law for Wf in Eq. (5.8a).

Second, the average decrease of the contact force in the bit-rock interaction shows
that in the AST model more energy applied by the rig at surface is used more in
the rock cutting process (i.e., producing more DOC) and less frictional dissipation
at the bit-rock interface (wearflat). Note that the frictional torque decreases as
the contact force gets reduced - following their relation in Eq. (5.8b). This will
be further explored in the analyses on drilling efficiency in the next subsection.

5.4.1.3 Comparison of drilling performance and frictional loading (at
the bit) under the variation of drilling operational parameters

The influence of the AST on drilling performance becomes even more apparent
when comparing the averaged axial bit velocity (ROP) and drilling efficiency of
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Figure 5.9: The evolution of contact forces at the bit for the distributed models
of drill-string without AST (BM model - top) and with AST (AST model - bot-
tom) with drilling operational parameters: hookload H0 = 56.6 kN and top-drive
angular velocity Ω0 = 60 rpm. The dashed lines show the averaged magnitudes
of the contact forces in both models.

the BM (red-dots) and AST (blue-dots) models, as depicted in Figure 5.10. In
these plots, these comparisons are conducted under drilling operational param-
eter variations: hookload H0 ∈ {16.9, 39.6, 56.6, 73.6, 96.2} kN and top angular
velocity Ω0 ∈ {30, 60, 120} rpm.

Note that the applied weight on the drill-string increases as the hookload de-
creases; see Figures 5.3 and 5.4. The hookload acts as a control parameter for
drilling performance in the axial direction, i.e., we expect an increase of ROP
when decreasing the hookload.

Inline with previous studies [187, 19], the average drilling efficiency is expressed
as the ratio between the average TOB used in the rock cutting process Tc and
the total of the average TOB due to the bit-rock interaction (which includes the
torque lost due to the frictional dissipation Tf ):

η = 〈Tc〉
〈Tc〉+ 〈Tf 〉

, (5.47)
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Figure 5.10: The comparison of averaged rate-of-penetrations (ROP; top) and
drilling efficiency (bottom) for the distributed models of drill-string without AST
(BM model) and with AST (AST model) under drilling operational parameter
variations: H0 ∈ {16.9, 39.6, 56.6, 73.6, 96.2} kN and Ω0 ∈ {30, 60, 120} rpm.

where 〈Tc〉 and 〈Tf 〉 are the average values of the (periodic) steady-state solutions
of TOB from the cutting and frictional components in the bit-rock interaction,
respectively.

From Figure 5.10, first, the top plot shows that the average ROP in the AST
model consistently outperforms the ROP in the BM model over the employed
ranges of drilling operational conditions. Second, the bottom plot supports the
result established in the top plot by visualizing that the rock cutting process in
the AST model is more energy-efficient than in the BM model and thus brings
higher ROPs.

Moreover, the average ROP increases in both BM and AST models with decreas-
ing hookload H0 and increasing top angular velocity Ω0. A decrease in hookload
H0, under a prescribed contact top angular velocity Ω0, results in increasing
drilling efficiencies. However, increasing top angular velocity Ω0 leads to slightly
decreasing drilling efficiencies for both BM and AST models. This indicates that
relatively less energy is used in rock cutting process.
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Figure 5.11: The gain ratios of drilling efficiency (top) and depth-of-cut (bottom)
of the distributed AST model relative to the distributed BM model under drilling
operational parameter variations: H0 ∈ {16.9, 39.6, 56.6, 73.6, 96.2} kN and Ω0 ∈
{30, 60, 120} rpm.

In a more detailed investigation, the gains in terms of drilling efficiency (top)
and depth-of-cut (bottom) of the AST model relative to these types of quantities
obtained from the BM model (i.e., ηast

ηbm
and dast

dbm
, respectively) are plotted in

Figure 5.11 for the same ranges of operational drilling conditions. In this way,
the essential benefits of using the AST to improve drilling performance are clearly
seen, i.e., positive gain in drilling efficiency with the AST up to 18% (in the top
plot) and positive gain in depth-of-cut with the AST up to 20% (in the bottom
plot).

Moreover, Figure 5.12 compares the contact force ratios of the BM and AST
models under the same drilling operational variations, where this contact force
ratio is given by

W̄f = 〈Wf 〉
〈Wc〉+ 〈Wf 〉

. (5.48)

The quantities 〈Wc〉 and 〈Wf 〉 are the averaged values of WOB from the cutting
and frictional components of the bit-rock interface law in steady-state region,
respectively. This figure shows the consistency over the varied drilling operational
region of the reduction of the contact force at the bit in the AST model compared
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Figure 5.12: The comparison of averaged contact force ratio at the bit wearflat
for the distributed models of drill-string without AST (BM model) and with
AST (AST model) under drilling operational parameter variation: H0 ∈
{16.9, 39.6, 56.6, 73.6, 96.2} kN and Ω0 ∈ {30, 60, 120} rpm.

to that in the BM model. This indicates that the frictional loading at the bit (in
Eq. (5.8b)) in the AST model is less than in the BM model, and this helps to
performance improvement (i.e., higher ROP) over the drilling parameters region.
As mentioned above, this reduction in the relative contribution of the wearflat
force in the total weight-on-bit also reduces the frictional losses at the bit which,
in turn, reduce heat-induced bit damage and prolong the operational time of the
drill-bit.

5.4.2 Effect of the AST on the dynamic loading on the
drill-string

In this part, we analyze the effect of the AST on the dynamic loading at the
interface between the drill-pipe and BHA parts of the drill-string system in both
benchmark (BM) and AST models. In Section 5.4.2.1, we focus on comparing the
steady-state responses of torques-on-interface (TOI), that represent the dynamic
loading at the interface (i.e., on the drill-string), for both models. In Section
5.4.2.2, we investigate the average values of the steady-state responses of TOI for
both models under varied drilling operational conditions in soft and hard rock
formations.

5.4.2.1 The torque responses at the interface of the drill-pipe (upper)
and BHA (lower) parts

Figure 5.13 shows the steady-state responses of TOI TL (in red) and torques-on-
bit Tb (TOB; in blue) for the BM model (top) and the AST model (bottom).
We consider at the top: hookload H0 = 56.6 kN and top angular velocity Ω0 =
60 rpm.
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Figure 5.13: The dynamic responses of torque-on-bit (TOB Tb; in blue) and
loading at the interface of the drill-pipe and BHA parts (torque-on-interface/TOI
TL; in red) for the BM model (in top) and AST model (in bottom) with drilling
parameters: hookload H0 = 56.6 kN and top angular velocity Ω0 = 60 rpm, and
rock parameters ε = σ = 120 MPa.

In this comparison on the steady-state responses of TOI, the peak-to-peak value
in the BM model is significantly larger than the one in the AST model, while the
peak-to-peak value of the TOB is comparable in both cases. This indicates that
dynamic loading on the drill-pipe is mitigated by the presence of the AST, which,
in turn, can reduce detrimental effects such as drill-string fatigue.

5.4.2.2 Dynamic loading comparison

As a performance indicator of the TOI response, we use the following ’amplitude’-
to-mean loading ratio at the interface

T ppL
T ssL

:= TmaxL − TminL

T ssL
, (5.49)

where T ppL and T ssL reflect the amplitude (peak-to-peak) and average (mean)
values, respectively, of the torque-on-interface TL (steady-state) response. The
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Figure 5.14: The comparison of the amplitude-to-mean loading ratios at the in-
terface (between the drill-pipe and BHA parts of the drill-string systems) for
the BM (red-dots) and AST (blue-dots) distributed models in hard rock for-
mation (ε = σ = 120 MPa; top figure) and soft rock formation (ε = σ =
60 MPa; bottom figure) – under drilling operational parameter variations: H0 ∈
{16.9, 39.6, 56.6, 73.6, 96.2} kN and Ω0 ∈ {30, 60, 120} rpm.

maximum and minimum peaks of the response are denoted by TmaxL and TminL ,
respectively.

Figure 5.14 presents the comparison of these amplitude-to-mean loading ratios at
the interface between the BM (red-dots) and AST (blue-dots) distributed models
for drilling cases in hard rock formation (ε = σ = 120 MPa; top) and soft rock
formation (ε = σ = 60 MPa; bottom) under operational parameter variations:
hookload H0 ∈ {16.9, 39.6, 56.6, 73.6, 96.2} kN and top angular velocity Ω0 ∈
{30, 60, 120} rpm. For the case of hard rock formation, we show a positive effect
of AST in reducing the amplitude-to-mean loading ratio at the interface over the
given parametric space of drilling operations. This is consistent with the results
in Figure 5.13.

In the case of soft rock formation, we see the same positive effect of the AST in re-
ducing the amplitude-to-mean loading ratio at the interface for a nominal top an-
gular velocity Ω0 = 60 rpm (in the entire range of hookloads). However, for other
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operating points, particularly related to the cases of lower and higher top angular
velocities, we observe that the amplitude-to-mean loading ratios at the interface
in the AST model are higher than the ones in the BM model. Therefore, we in-
vestigate further the dynamic responses of both models associated with these two
particular operating points, namely the top angular velocity Ω0 ∈ {30, 120} rpm
with a nominal hookload H0 = 16.9 kN for the case of soft rock formation.

The case of soft rock formation: with lower and higher top angular
velocities Ω0 Figure 5.15 shows the investigation results; the top plots show
the steady-state responses of TOB Tb (in blue) and TOI TL (in red) for both BM
and AST models with the lower top angular velocity Ω0 = 30 rpm. Figure 5.16
shows the plots of the same responses for both models with the higher angular
velocity Ω0 = 120 rpm. In the case of Ω0 = 30 rpm, we observe that the response
of the torque TL in the BM model indeed has a lower peak-to-peak value than
the same response in the AST model. This leads to lower the amplitude-to-mean
loading ratio at the interface in Eq. (5.49) for the BM model.

For Ω0 = 120 rpm, the BM model exhibits a stabilizing effect on the steady-state
responses of both torques, which leads to a near-zero amplitude-to-mean loading
ratio at the interface. In this case, the AST model also shows a slightly higher
peak-to-peak TOI. We care to stress, however, that in these scenarios the TOB
response between the two models differs significantly: the peak-to-peak value of
the TOB is significantly higher than for the AST model. Taking this fact into
account, the AST, in fact, realizes a higher level of mitigation of the TOB towards
the TOI, even in these scenarios.

5.5 Performance-based design of the AST
parameters

In this section, we tune the key parameters of the AST design, namely its spring
stiffness Kb and the lead angle β of its helical spline for drilling performance im-
provement [187, 181], and also perform robustness analysis on the tuned param-
eters of the AST under parametric variations of drilling operational conditions,
drill-string parameters, and rock formation characteristics. In Section 5.5.1, the
tuning process is conducted to find the optimal parameters of the AST, Kopt

b and
βoptast for optimal performance (in terms of drilling efficiency) over the variations
of drill-string parameter (the drill-pipe length L) and rock parameters (intrin-
sic specific energy ε and normal contact stress of rock σ) under a set of drilling
operational parameters (hookload H0 and top angular velocity Ω0). In Section
5.5.2, we perform a comparative study on the robustness of the tuned and stan-
dard/existing design parameters of AST in the scope of drilling performance,
frictional loading at the bit and dynamic loading on the drill-string. In particu-
lar, we focus to assess the robustness under some sets of parametric variations of
drilling operational conditions, drill-string, and rock formation parameters.
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Figure 5.15: The dynamic responses of torque-on-bit/TOB (Tb; in blue) and
loading at the interface of the upper and lower parts of drill-string (torque-on-
interface/TOI TL; in red) for the BM model (in top) and AST model (in bottom)
with hookload H0 = 16.9 kN and soft rock formation (ε = σ = 60 MPa) for the
case of lower top angular velocity (Ω0 = 30 rpm).

5.5.1 The tuned design parameters of the AST

To tune the design parameters of AST, first, we consider the following parametric
sets:

1. The stiffness of the AST spring,

Kb ∈ {456.7, 1065.7, 1522.5, 1979.2} kNm , (5.50a)

2. The lead angle of the AST helical spline,

βast ∈ {15, 30, 45, 60} deg, (5.50b)

3. The drill-string parameter (the drill-pipe length),

L ∈ {700, 1000, 1500}m, (5.50c)
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Figure 5.16: The dynamic responses of torque-on-bit/TOB (Tb; in blue) and
loading at the interface of the upper and lower parts of drill-string (torque-on-
interface/TOI TL; in red) for the BM model (in top) and AST model (in bottom)
with hookload H0 = 16.9 kN and soft rock formation (ε = σ = 60 MPa) for the
case of higher top angular velocity (Ω0 = 120 rpm).

4. The rock parameters (e.g., indicating hard and soft rock properties) for both
cutting and frictional components of the bit-rock interaction,

ε = σ ∈ {60, 90, 120} MPa. (5.50d)

Based on the earlier work [187], we use the stiffness Kb = 1522.5 kN
m and the lead

angle βast = 45 deg as the standard (nominal) design parameters of AST (design
baseline). Nominal drilling operational parameters, hookload H0 = 56.6 kN and
top angular velocity Ω0 = 60 rpm, are used in the numerical simulations. Second,
for the tuning process, the average drilling efficiency η in Eq. (5.47) is set as the
performance indicator to find the optimal design of AST. The tuning procedure
is detailed as follows:

1. Simulate the distributed AST model for every AST design parameter in
the parameter sets in Eqs. (5.50a) - (5.50b) with considering particular
drill-string and rock parameters (e.g., L = 700 m and ε = σ = 60 MPa).
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Figure 5.17: The drilling efficiency for the AST model under the variation of the
design parameters of the AST for nominal drilling operational parameters: H0 =
56.6 kN and Ω0 = 60 rpm, and for drill-string and rock parameters: L = 1000 m
and ε = σ = 60 MPa, respectively.

2. Collect all drilling efficiency η values (Eq. (5.47)) based on the steady-
state responses for every design parameter of the AST in the sets, and then
determine the optimal design parameters of AST, Kopt

b for the optimal stiff-
ness and βoptast for the optimal lead angle, based on the maximum (optimal)
efficiency for this particular drill-string and rock parameters used in step 1.

3. Repeat steps 1 and 2 above for the other values of drill-string and rock
parameters in Eqs. (5.50c) - (5.50d).

Figure 5.17 shows the averaged drilling efficiency plot for the distributed AST
model under the sets of AST design parameters in Eqs. (5.50a) - (5.50b) for a
couple of drill-string and rock parameters: L = 1000 m and ε = σ = 60 MPa,
and with a nominal drilling operational parameters: hookload H0 = 56.6 kN and
top angular velocity Ω0 = 60 rpm. In this particular set of drill-string and rock
parameters, the optimal drilling efficiency (see the red dot) is achieved with a
higher stiffness Kb and lower lead angle β of the AST design, i.e., Kb = 1979.2 kN

m
and βast = 30 deg.

After we run the tuning procedure above for all the variations of the drill-pipe
length and the rock parameters in Eqs. (5.50c) - (5.50d), we then collect all
optimal values of drilling efficiencies into a single plot in Figure 5.18 (for each
point of drill-string and rock parameters in the sets), together with the plots of
their associated optimal design parameters (the AST stiffness and lead angle). As
the result of this tuning process, Figure 5.18 shows in overall that the optimal
drilling efficiencies are achieved with the higher stiffness Kopt

b = 1979.2 kN
m (middle

plot) and lower lead angle βoptast = 30 deg (bottom plot) – although for some spe-
cific parameter settings, βast = 15 deg seems optimal. Hence, these parameters,
Kopt
b = 1979.2 kN

m and βoptast = 30 deg, are obtained as the tuned design parameters
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of AST for optimal drilling efficiency under the variations of the drill-pipe length:
L ∈ {700, 1000, 1500}m and the rock parameters: ε = σ ∈ {60, 90, 120} MPa
with a nominal drilling operational parameters: H0 = 56.6 kN and Ω0 = 60 rpm.

Next, we analyze the robustness of these tuned design parameters of AST un-
der some variations of drilling operational conditions and drill-string and rock
parameters.
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Figure 5.18: The optimal drilling efficiency (top plot) results from the tuned
design parameters of AST: Kopt

b = 1979.2 kN
m (middle plot) and βoptast = 30 deg

(bottom plot) applied in the AST model under the variations of the drill-string
parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m and the rock parame-
ters: ε = σ ∈ {60, 90, 120} MPa and a nominal drilling operational parameters:
H0 = 56.6 kN and Ω0 = 60 rpm.
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5.5.2 Robustness analysis
In this section, we present the robustness analysis on the tuned design parameters
of the AST (also called the tuned AST model) for three indicators: drilling per-
formance, frictional loading at the bit, and dynamic loading at the interface - all
under the parametric variations of drilling operational conditions, rock and drill-
string physical characteristics. We also perform this robustness analysis on the
standard/existing design parameters of the AST (also called the standard AST
model) and the benchmark (BM) model and compare the three indicators among
these three models. We consider the following parametric sets of drilling opera-
tional conditions: H0 ∈ {16.9, 56.6} kN for the hookload, and Ω0 ∈ {60, 120} rpm
for the top angular velocity.

5.5.2.1 Drilling performance and frictional loading at the bit

Figures 5.19 and 5.20 show the comparison of the average drilling efficiencies (as a
ratio relative to the drilling efficiency of the BM model) based on the steady-state
responses of

1. The standard/nominal AST model with the stiffness Kb = 1522.5 kN
m and

the lead angle βast = 45 deg, and

2. The tuned AST model with the optimal stiffness Kopt
b = 1979.2 kN

m and the
optimal lead angle βoptast = 30 deg.

In addition, Figures 5.21 and 5.22 show the comparison of the average depths-of-
cut (also as a ratio relative to the depth-of-cut of the BMmodel) obtained from the
same AST models responses. These comparisons are conducted under the varia-
tions of the drill-string parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m
and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa and with the parametric
sets of drilling operational conditions above.

First, these two comparisons show that the tuned AST model consistently gives
higher drilling efficiency and a superior cutting process (reflected in the depth-
of-cut) than the standard AST model. Relative to the efficiency and the DOC
obtained from the BM model (without the AST), the tuned AST model can
gain its average efficiency and DOC up to 18% and 20%, respectively, depending
also on the drilling operational parameters being employed. The standard AST
model gains up to 12% for the average efficiency and 15% for the average DOC
with the same operational conditions. Second, these comparisons also show the
robustness of the tuned and standard design parameters of the AST over the
parametric spaces of drilling operational conditions, rock and drill-string physical
characteristics.

Figures 5.23 and 5.24 support the findings above by showing the comparison of
contact force ratio (in Eq. (5.48)) obtained from the steady-state responses of the
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Figure 5.19: The comparison of the drilling efficiency (relative to the drilling
efficiency of the BM model) for the distributed AST models with the standard
(nominal) design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the
tuned design parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg), under the varia-

tions of the drill-string parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m
and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa and with the variation
of drilling operational parameters: 1) H0 = 56.6 kN and Ω0 = 60 rpm (top), and
2) H0 = 16.9 kN and Ω0 = 60 rpm (bottom).

tuned and standard AST models and BM model for the same ranges of operating
conditions, drill-string, and rock parameters.

First, this comparison explains that the extra axial vibrations induced by the
tuned AST model gives a lower contact force than the standard AST and BM
models. This is shown by the reduced magnitudes of the contact forces for the
tuned AST model. Second, these reduced contact forces support to improve the
drilling performance in the tuned AST model, as the frictional torque (in Eq.
(5.8b)) decreases. Hence, this indicates that more energy used for the rock cutting
in the tuned AST model. Third, this reduction of the contact force magnitudes
in both tuned and standard AST models is robust over the parametric spaces of
operating conditions, drill-string, and rock physical characteristics.
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Figure 5.20: The comparison of the drilling efficiency (relative to the drilling
efficiency of the BM model) for the distributed AST models with the standard
(nominal) design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the
tuned design parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg), under the varia-

tions of the drill-string parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m
and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa and with the variation of
drilling operational parameters: 1) H0 = 56.6 kN and Ω0 = 120 rpm (top), and
2) H0 = 16.9 kN and Ω0 = 120 rpm (bottom).

5.5.2.2 Dynamic loading on the drill-string

In this part, we focus to investigate the dynamic loading on the drill-string, par-
ticularly at the interface of the upper and lower parts of the string, for the tuned
and standard AST models and the BM model within the same ranges of operating
conditions, drill-string, and rock parameters. This type of dynamic loading affects
the drill-string structure performance, which can impact the fatigue level and the
reliability of the drill-string structure to support the downhole equipment in the
BHA.

Figures 5.25 and 5.26 show the comparison of the ’amplitude’-to-mean loading
ratios at the interface (in Eq. (5.49)). This comparison shows that the loading
ratio of the tuned ASTmodel gives the lowest value among the three models within
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Figure 5.21: The comparison of averaged depth-of-cut (DOCs, relative to the
depth-of-cut of the BM model) for the distributed AST models with the standard
(nominal) design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the
tuned design parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg), under the varia-

tions of the drill-string parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m
and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa and with the variation
of drilling operational parameters: 1) H0 = 56.6 kN and Ω0 = 60 rpm (top), and
2) H0 = 16.9 kN and Ω0 = 60 rpm (bottom).

the operational condition of low top angular velocity (Ω0 = 60 rpm). For the case
of high top angular velocity (Ω0 = 120 rpm), in general the same tendency of lower
loading ratio for the tuned AST model is also observed, except for ratios with the
soft rock parameter (ε = σ = 60 MPa). As discussed in the Section 5.4.2.2, we
observe that the BM model has the lowest ’amplitude’-to-mean loading ratio at
the interface in this parametric condition (a high top angular velocity within a
soft formation) due to experiencing a stabilizing effect; see also Figures 5.15 and
5.16.

Overall, Figures 5.25 and 5.26 show that the tuned and standard AST models give
low loading ratios at the interface, i.e., the ratios below 0.05. In addition, this
reduction of the loading ratio at the interface in both tuned and standard AST
models is robust in general over the parametric spaces of operating conditions,
drill-string, and rock physical characteristics. Hence, this leads to better drill-
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Figure 5.22: The comparison of averaged depth-of-cut (DOCs, relative to the
depth-of-cut of the BM model) for the distributed AST models with the standard
(nominal) design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the
tuned design parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg), under the varia-

tions of the drill-string parameter (the drill-pipe length): L ∈ {700, 1000, 1500}m
and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa and with the variation of
drilling operational parameters: 1) H0 = 56.6 kN and Ω0 = 120 rpm (top), and
2) H0 = 16.9 kN and Ω0 = 120 rpm (bottom).

string structure performance by including the AST in the drill-string.

5.6 Conclusions
The main conclusions from this study are drawn as follows:

• Drilling performance (in terms of ROP and drilling efficiency) is improved
by including the AST. This is due to a reduction in the (frictional) contact
force at the bit on average as induced by the AST dynamics, resulting in
a higher cutting force (improvement on the rock cutting efficiency). These
results are in line with the earlier works [181, 187, 19], which were limited
to lumped-parameter models for the drill-string dynamics. While earlier
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Figure 5.23: The comparison of the averaged (frictional) contact force ratio at
the bit wearflat for the distributed AST models with the standard (nominal)
design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the tuned design
parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg) and for the distributed BM

model, all under the variations of the drill-string parameter (the drill-pipe length):
L ∈ {700, 1000, 1500}m and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa
and with the variation of drilling operational parameters: 1) H0 = 56.6 kN and
Ω0 = 60 rpm (top), and 2) H0 = 16.9 kN and Ω0 = 60 rpm (bottom).

work [2, 5, 3] showed that the high-order drill-string modes, omitted in
the models, are essential from a stability perspective, we observe in this
chapter that the arising non-local limit cycling behavior is dominated by the
lower-frequency modes. This explains the consistency of the observations
regarding the effect of the AST on drilling performance between lumped-
and distributed-parameter models.

• In-line with the earlier work [187], optimal tuning of the stiffness and lead-
angle results in higher stiffness and lower lead angle that deliver improved
drilling performance.

• The AST induces increased axial vibrations on the bit, which lowers wearflat
loading and the frictional losses at the bit. This mechanism 1) explains the
improvement in drilling efficiency and 2) leads to a lower (friction-induced)
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Figure 5.24: The comparison of the averaged (frictional) contact force ratio at
the bit wearflat for the distributed AST models with the standard (nominal)
design parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the tuned design
parameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg) and for the distributed BM

model, all under the variations of the drill-string parameter (the drill-pipe length):
L ∈ {700, 1000, 1500}m and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa
and with the variation of drilling operational parameters: 1) H0 = 56.6 kN and
Ω0 = 120 rpm (top), and 2) H0 = 16.9 kN and Ω0 = 120 rpm (bottom).

thermal loading on the bit, potentially beneficial for bit life.

• The AST can assist to reduce the dynamic loading on the drill-string, which
is beneficial for reducing the fatigue in the drill-string and providing more
reliability on the downhole equipment in the BHA.

• From the robustness analysis, it is observed that both the standard AST and
optimally tuned AST design can robustly 1) improve drilling efficiency and
2) decrease dynamic loading on the drill-string for a wide range of drill-string
parameters, rock formation characteristics, and operational conditions.
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Figure 5.25: The comparison of the ’amplitude’-to-mean loading ratios at the
interface for the AST distributed models with the standard (nominal) design
parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the tuned design pa-
rameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg) and for the BM distributed

model, under the variations of the drill-string parameter (the drill-pipe length):
L ∈ {700, 1000, 1500}m and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa
and with the variation of drilling operational parameters: 1) H0 = 56.6 kN and
Ω0 = 60 rpm (top), and 2) H0 = 16.9 kN and Ω0 = 60 rpm (bottom).
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Figure 5.26: The comparison of the ’amplitude’-to-mean loading ratios at the
interface for the AST distributed models with the standard (nominal) design
parameters (Kb = 1522.5 kN

m and βast = 45 deg) and with the tuned design pa-
rameters (Kopt

b = 1979.2 kN
m and βoptast = 30 deg) and for the BM distributed

model, under the variations of the drill-string parameter (the drill-pipe length):
L ∈ {700, 1000, 1500}m and the rock parameters: ε = σ ∈ {60, 72, 90, 120} MPa
and with the variation of drilling operational parameters: 1) H0 = 56.6 kN and
Ω0 = 120 rpm (top), and 2) H0 = 16.9 kN and Ω0 = 120 rpm (bottom).





Chapter 6

Conclusions and
Recommendations

6.1 Conclusions
In this thesis, the dynamic modeling and analysis of drilling systems equipped
with the AST downhole regulator has been considered. In particular, this the-
sis has studied the effect of the AST on drilling performance (in terms of ROP
and drilling efficiency) under realistic scenarios closer to real drilling operations
in fields. Based on field data, incorporating the AST in the BHA results in less
damage to the drill bit (i.e., prolonging the bit life) and improves drilling perfor-
mance in a single run of the drill bit, i.e., higher drilling efficiency (lower MSE)
and less bit tripping (replacement). Therefore, it is of great practical interest to
understand the basic mechanism of the tool’s working principle for maintaining
optimal drilling performance in more realistic drilling scenarios.

The objectives of this thesis are divided into the following three categories. The
first category is related to the development of dynamic models of drilling systems
without and with the AST regulator for three separated drilling scenarios incor-
porating: 1) deviated wellbore trajectories where the contact between the BHA
and the borehole is considered; 2) interbedded formations composed of hard and
soft rock properties; and 3) continuum behavior of long, slender drill-pipe struc-
tures. The second category is about developing numerical simulators associated
with these three drilling scenarios and conducting performance analyses, where
the effect of the AST on drilling performance is analyzed under these scenarios, in-
cluding the associated underlying mechanism of such an effect. The last category
is related to a parametric study of the AST design for optimal drilling perfor-
mance, including its robustness analysis under the variation of drilling system
parameters and operational conditions.

151
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The main contributions of this thesis addressing the objectives above can be
summarized in terms of contributions in the following aspects.

6.1.1 The case of drilling deviated wellbores

The key contributions for the study on the influence of the AST on the drilling
performance of rotary drilling systems in a deviated wellbore scenario in Chapter
2 are as follows:

• A detailed model was developed that includes coupled axial-torsional drill-
string dynamics, bit-rock interaction, the AST, and frictional effects of sta-
bilizers (in the BHA) due to borehole inclination. The model employs a
set-valued approach to account for all frictional contact effects, resulting in
a delay differential inclusion model. A numerical approach based on the
time-stepping method was developed for numerical simulations.

• Simulations revealed that the AST significantly enhances both drilling effi-
ciency and ROP across a wide range of deviated wells. The AST’s positive
impact on drilling performance is evident in various well deviation scenarios,
confirming its broad applicability.

• Moreover, the study found that spatial friction has a minimal effect on
ROP responses. This is attributed to the relatively small axial component
of the spatial friction compared to its tangential component. However, the
simulation results highlighted that when spatial friction acts entirely above
the AST, there is a slight improvement in drilling performance compared
to cases without spatial friction (i.e., vertical drilling) or when friction acts
below the tool.

6.1.2 The case of drilling in interbedded formations

In this case, the first contribution, as detailed in Chapter 3, is the extension
of the bit-rock interface laws of PDC bits, initially developed for homogeneous
formations, to scenarios involving a bit transitioning between two different rock
layers. The extended formulation incorporates adaptations in rock mechanical
properties and bit-design parameters for both cutting and frictional contact com-
ponents. Key findings and contributions of this part include:

• The novel bit-rock interaction model enabled the construction of 3D E − S
diagrams, which illustrate the characteristics of dynamic and kinematic vari-
ables distinctly different from those observed in homogeneous formations.

• The study also analyzed drilling efficiency as a function of bit engagement
during the transitional phase between two rock layers. In addition, the
numerical results highlight that both the 3D E−S diagrams and drilling ef-
ficiency are highly dependent on the bit shape during the transitional phase.
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These dependencies significantly deviate from the known 2D E−S diagrams
applicable to homogeneous formations, underscoring the importance of the
novel interface laws for accurately assessing drilling efficiency in interbedded
formations.

• The new interface laws are also applicable in dynamic drill-string models
for layered formations, providing a framework for analyzing vibrations dur-
ing drilling. Overall, the extended bit/rock interface laws provide a more
comprehensive understanding of drilling dynamics in layered formations, en-
hancing the ability to optimize bit design and operational parameters for
improved drilling performance.

The second contribution, developed in Chapter 4, is related to the dynamic mod-
eling of drill-string systems with AST drilling in interbedded formations, where
the novel bit-rock interface law, which incorporates the transitional phase between
distinct layers, couples axial and torsional dynamics. Key contributions of this
part are highlighted as follows:

• By utilizing the developed simulation tool for the drill-string models, the
effect of AST on the drill-string systems, particularly regarding response
characteristics, drilling performance, and efficiency, was explored. It is re-
vealed that the AST notably enhances the ROP and drilling efficiency in
interbedded formations. Improvement in this drilling performance was cor-
roborated by MSE observations, i.e., lower MSE for the model with the
AST.

• The inclusion of AST results in additional axial vibrations; as such, these
vibrations reduce frictional contact at the bit-rock interface. Lower frictional
dissipation on the bit potentially also extends bit lifetime due to reduced
thermal loading, which appears to be consistent with field observations on
the post-drilling conditions of drill bits in Figure 1.9 in Chapter 1.

6.1.3 On the influence of distributed behavior of
long-slender drill-pipe structures

This aspect is studied on the basis of a novel infinite-dimensional model of rotary
drilling systems without and with the AST and the associated numerical simulator
developed in Chapter 5. The key contributions and findings of this study are listed
as follows:

• The AST induces increased axial vibrations on the bit, which lowers wearflat
loading and the frictional losses at the bit. This mechanism leads to a
lower (friction-induced) thermal loading on the bit, potentially beneficial
for bit life, and results in a higher cutting force (improvement on the rock
cutting efficiency). Overall, the simulation results of the developed models
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reveal that drilling performance (in terms of ROP and drilling efficiency) is
improved by including the AST.

• The limit cycling behavior is dominated by the lower-frequency modes of
the drill-string dynamics. This explains the consistency of the observations
regarding the effect of the AST on drilling performance between lumped-
parameter and distributed-parameter models.

• Moreover, by reducing dynamic loading on the drill-string, the AST con-
tributes to decreased fatigue, enhancing the reliability and longevity of
downhole equipment in the BHA.

• Overall, the AST’s ability to reduce frictional forces at the bit and dynamic
loading on the string makes it a valuable tool for improving both the effi-
ciency and reliability of drilling operations.

6.1.4 Performance-based parametric study of the AST
design and the associated robustness analysis

In Chapter 2, a parametric design study indicates that an optimal tool design can
be achieved, maximizing drilling efficiency. This optimal design is robust, per-
forming well across a wide range of wellbore inclinations and various operational
conditions. In Chapter 5, the analysis reveals several key points regarding the
tuning of stiffness and lead-angle in the AST design and its impact on drilling
performance. Optimally tuning the stiffness leads to higher overall stiffness in the
drill-string, while adjusting the lead angle to a lower value further contributes to
enhanced drilling performance.

In addition, Chapter 5 confirms that both the standard and optimally tuned AST
designs significantly enhance drilling performance and are effective in reducing
dynamic loading on the drill-string, which is crucial for operational stability and
tool longevity. Moreover, the robustness analysis indicates that these benefits are
consistent across a wide range of parametric conditions, including different drill-
string parameters, varying rock formation characteristics, and diverse operational
conditions. This robustness underscores the adaptability and reliability of both
AST designs in real-world drilling scenarios.

In summary, the use of a passive downhole tool in rotary drilling systems signifi-
cantly improves drilling efficiency and rate of penetration under the influence of
three drilling conditions mentioned above.

6.2 Recommendations
This study has revealed significant results in the development of dynamic models,
including the associated numerical simulators, and the analysis of performance of
drilling systems without and with the AST – where drilling scenarios involving
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deviated wellbore trajectory, interbedded formations, and continuum behavior of
long-slender drill-pipe structure are considered. In addition, performance-based
parametric studies on the AST design and its robustness analysis are also pursued.
However, there remain several aspects for further investigation, as proposed below.

6.2.1 Aspects related to the modeling and its validation
via experimental and field data

6.2.1.1 Bit-rock interaction

The interface laws used in both lumped-parameter model in Chapters 3 and 4 and
distributed-parameter model in Chapter 5 are mainly dependent on the evolution
of depth-of-cut and the bit-rock physical parameters associated with cutting and
friction at the bit-rock interface. Furthermore, the bit-rock interaction model
involving a bit transitioning between two distinct rock layers in Chapter 3 has
emphasized how significant the influence of different bit-rock parameters in each
layer is on the reaction force and torque on the bit.

Therefore, it is recommended in the next research steps that an accurate esti-
mation of bit-rock parameters is considered for improving the prediction of the
drilling responses of PDC bits. For example, in [59, 30], an offline (least-square-
based) estimation technique has been used to estimate the bit-rock parameters
based on field data. More recent advanced system-identification techniques, i.e.,
data-driven and machine-learning-based techniques, can potentially improve the
parametric accuracy of the estimation results in the presence of uncertainties in
field data. It is also worth noting that information gathered from post/while-
drilling activities are essential to estimate the rock parameters (e.g., intrinsic
specific energy and contact pressure) based on the formation lithology types (e.g.,
limestone, shale, etc.).

In addition, drilling test facilities (e.g., on a lab scale), where a kinematically
controlled condition can be imposed, are also essential for supporting further
validation and verification of the estimated bit-rock parameters and the developed
models. Examples of such facilities have been developed in recent works [96, 47,
95, 185].

In terms of the bit parameters, the bit profile (shape) is found to be an essential
factor in quantifying the bit parameters associated with the cutting and frictional
components of the interface laws, particularly for the bit engagement during the
bit transition between rock layers; see Chapters 3 – 4. Thus, it is interesting
to consider in future works the more complex (realistic) bit design in the bit-
rock interface laws, e.g., as developed in [168, 171, 169], for predicting the bit
responses, in particular for drilling cases in interbedded formations. Note that,
based on field case studies [26, 135], advanced bit design can also improve drilling
efficiency.
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6.2.1.2 The lateral dynamics of drill-string systems and the spatial
friction between the drill-pipes and borehole wall

In this thesis, the modeling has been focused on the axial and torsional dynamics
of the drill-string system, for cases without and with the AST regulator. In future
works, it is an interesting aspect to include the lateral dynamics of drill-string sys-
tems into the dynamic system model, including the development of the associated
numerical simulators. The lateral vibrations of the drill-string systems can lead to
the phenomenon of bit whirling where the BHA part (e.g., stabilizers, drill collar)
has contact with the borehole wall [105]. In [105], the coupling of torsional and
lateral dynamics of drill-string systems was developed to analyze the (torsional)
stick slip vibrations and bit whirling phenomena. Given the fact that it is clear
from this thesis that the interaction between the drill-string dynamics and the
bit-rock interaction is key in the modelling and prediction of drill-string vibra-
tions and drilling performance, it will also be interesting to further investigate the
role of the bit-rock interaction and the borehole - drill-string interaction in the
lateral dynamics (and its coupling to the axial and torsional modes).

In Chapter 2, the spatial friction due to the contact between the stabilizers (in
the BHA) and borehole wall due to the inclined trajectory is considered. This
case can be extended to the case of spatial friction at multiple points between
the long-slender drill-pipe structure and borehole wall, utilizing the distributed-
parameter modeling approach in Chapter 5. It is envisioned that this spatial
friction at the drill-pipe with the borehole wall can be studied together with the
lateral dynamics of drill-string systems leading to the bit whirling.

Moreover, recent works in the milling process [45, 46] have developed an alterna-
tive approach for calculating the chip thickness in which the regenerative effect
that induces time delay in the cutting process and acts as the root cause of the
self-excited vibrations in such a process is considered. This approach can be ex-
tended for computing the evolution of depth-of-cut in the bit-rock interaction,
where the lateral motion of the bit can be involved. This would be an essential
stepping stone towards drill-string models including torsional, axial and lateral
dynamics.

6.2.2 AST design

In Chapters 2 and 5, parametric studies of the AST design in terms of its spring
stiffness and the lead angle of its helical spline have been pursued. In particular,
Chapter 5 has discussed the robustness of these two design parameters for drilling
performance under the variations of drilling operational conditions and drill-string
and rock physical parameters.

Therefore, it is interesting to further analyze other parametric quantities of the
AST physical design, such as the length of the spline (for its stroking moves)
and the optimal placement of the AST in the BHA relative to the drill-bit. In
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particular, the effect of these AST design aspects on lowering the wearflat contact
force on the bit (as the main actor for drilling performance improvement with the
AST) and the dynamic loading on the drill-string structure should be investigated.
Besides, it is also interesting to explore the effect of AST on stick-slip vibration
mitigation via the current modeling approaches.

However, the design exploration of and the study of stick-slip mitigation with the
AST require to be supported by lab-scale experimental and field data for analysis,
in line with the earlier works [182, 177]. Lab-scale experimental testing and field
data can surely provide a better physical understanding of the phenomena and
essential support for design and validation purposes. For example, the downhole
kinematic and dynamic data at the bit and the AST are useful for assessing the
contact force at the bit and the reaction torque on the AST (or on the BHA),
respectively, which can provide further insight for design and verification purposes.

6.2.2.1 Linearized models of drill-string dynamics with the AST

In a nominal drilling condition, a linearized model of drill-string dynamics with the
AST can be pursued for performing a stability analysis (in the frequency domain)
to explore in more depth the parametric design of the AST. The linearization
procedure and the method for the stability analysis can be based on previous works
for the benchmark model (a drilling system without the AST), such as in [27, 108,
28] based on the lumped-parameter approach, and in [5, 3, 4] for the distributed-
parameter approach. Moreover, these linearized models can also be useful in
designing active control strategies (applied to the rig) and performing its stability
analysis for finding the optimal drilling operational envelope for performance and
mitigating the onset/growth of (torsional) stick-slip vibrations. In the next sub-
section, the recommended aspects of active control strategies are detailed.

6.2.3 Active control strategy at surface (drilling rig)

Based on the field report in [99], a combined implementation of PDC bits, Z-
Torque (an active control module), and AST technologies in drilling operations
involving carbonate and interbedded shale lithology can bring more improvement
to drilling performance (ROP). On the other hand, the robustness analysis in
Chapter 5 has indicated that an optimal tuning of drilling operational parameters
imposed by the rig (i.e., hookload and top angular velocity) can further assist the
AST in delivering better drilling performance under variations of the formation
lithology types (i.e., soft and hard rock formations). Therefore, it is interesting
for the next research lines to explore the design, analysis, and implementation
of an active control strategy where it is combined with the AST application in
a unified framework for performance improvement and mitigating the onset and
growth of undesired vibrations in drill-string systems.

As an option, the unified framework can be in a cascade control scheme as depicted
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Figure 6.1: The schematic of the cascade control scheme composed of the AST
for the inner loop and the active controller for the outer loop.

in Figure 6.1, which consists of two control loops. First is the inner loop, in which
the AST is mainly responsible for stabilizing the dynamics of the lower BHA part
(below the AST) and directly driving the downhole states at the bit (e.g., the bit
velocities Vb and Ωb, and the WOBWb and TOB Tb). Second is the outer loop, in
which the active controller imposes the optimal drilling operational parameters on
the rig (e.g., the top angular velocity Ω0 and hookload H0) to drive the inner loop
dynamics (via the drill pipe and the upper BHA part) for achieving the desired
kinematic and dynamic variables at the bit (e.g., the desired bit velocities V refb

and Ωrefb , and the desired WOB W ref
b and TOB T refb ).

Note that the performance of the cascade control scheme has been successfully
proven in process control strategy, i.e., for composition control in the distillation
column [117]. This scheme is more efficient than a single feedback controller for
disturbance rejection purposes involving long time-delays or lags. In addition,
an effective cascade control scheme is essentially indicated by faster inner loop
response (typically about five times faster) than the outer loop response. There-
fore, this cascade control scheme is envisioned to be a suitable framework for
drill-string dynamics, as the (lower) BHA dynamics are typically having much
faster responses than the dynamic responses of the long-slender drill-pipe struc-
ture.

Moreover, by utilizing the control-oriented modeling approaches presented in this
thesis, this recommendation can be categorized in the following ways:

6.2.3.1 Active control design based on the lumped-parameter approach

In this thesis, it is observed that the responses of drill-string dynamics are domi-
nated by lower frequency modes. Thus, it is relevant to design an active control
strategy based on the lumped-parameter model of drill-string dynamics equipped
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with the AST.

As an example, the earlier work [183] has presented a robust output-feedback con-
trol design to eliminate torsional stick-slip vibrations in a drilling system. This
active control strategy is designed based on the dynamics of the drill-string repre-
sented as a Lur’e-type lumped-parameter system (e.g., separating the nonlinearity
term of the bit-rock interaction from the linear dynamics of the nominal system)
and, interestingly, the uncertainties of the bit-rock parameters taken into account
in the controller design. Furthermore, it has also been implemented in a lab-scale
experimental drill-string setup that represents such a drilling system with mul-
tiple dominant torsional flexibility modes [182, 177]. Hence, it is interesting to
extend such an active control strategy with the presence of the AST in a cascade
scheme, as depicted in Figure 6.1.

The work [28] presented the stability analysis for the state- and output-feedback
controllers designed based on the linearized model of drill-string dynamics in
terms of nonsmooth delay-differential equations (DDEs) with state-dependent de-
lays. This analysis can also be extended later in the case of drill-string dynamics
equipped with both an active controller and the AST to find the optimal para-
metric designs of both the AST and the controller. In addition, other examples
of active control strategies designed with lumped-parameter models of drill-string
dynamics are as follows: pole-placement technique [189], Proportional-Integral
(PI) controller [91], Proportional-Derivative (PD) controller [149], H∞ control
approach [159], and H∞ gain-scheduled active control strategy developed with a
linear-parameter-varying (LPV) modeling approach of drill-string dynamics [49].

State estimator/observer for the downhole kinematics and dynamics
It is worth noting that rotary drilling systems can be categorized as non-collocated
systems, where the placement of sensors and actuators is at different positions
within the system. Therefore, in the design of active controller, e.g., within the
cascade control scheme in Figure 6.1, state observer design is often taken into ac-
count, particularly for estimating the downhole states (e.g., bit angular velocity,
weight-on-bit, torque-on-bit, torque at the interface on the drill-string) when sen-
sors are not available at the desired locations. The work [182] provides a relevant
example of state observer design and implementation based on the torsional dy-
namics of a drill-string system. This work can be extended to the case involving
the axial drill-string dynamics and the AST under the cascade scheme.

6.2.3.2 Active control design based on the distributed-parameter ap-
proach

As an example of an active controller design based on a distributed-parameter
model, the earlier works [166, 70] show the procedures for designing a prediction-
based state-feedback controller that stabilizes the coupled axial-torsional drill-
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string vibrations while dealing with the distributed behavior of the dynamics and
the associated delays induced by the bit-rock interaction. Moreover, in [129, 128],
a combination of torsional damping subs distributed along the drill string and
an On-Off control scheme with a proportional controller is studied, particularly
on its effectiveness to mitigate (torsional) stick-slip vibrations. In that work, a
distributed-parameter approach is used to model the drill-string system equipped
with such damping subs and to design the active control strategy. All these works
provide the first stepping stone for designing an active controller for performance
improvement and mitigating unwanted vibrations where the AST application is
also involved in the drill-string dynamics.

6.2.4 High-frequency torsional oscillations (HFTO)

In [191], it is reported that recently, high-frequency torsional oscillations (HFTO)
have attracted increased attention in the drilling industry. This phenomenon,
as observed via field measurement and lab experiments, is characterized by high-
frequency self-excited torsional oscillations (often encountered while drilling harder
rock formations) and is localized in the lower BHA or lower part of the drill-string
only. These oscillations are generally excited by the bit-rock interaction [90, 86]
and can induce high-frequency torsional loads in different locations of the drill-
string. The severity of these loads is dependent on the BHA design, vibrational
modes, bit type, drilling mud parameters, rock hardness, and drilling operational
parameters (e.g., WOB, TOB, angular bit velocity, etc.). As an impact, HFTO
can cause very harmful conditions for the downhole equipment, including bit
damage.

Given this fact, it is interesting to extend the distributed models of drill-string
dynamics in Chapter 5 to further analyze the physical mechanism (root cause)
leading to the onset or growth of such an HFTO phenomenon. Subsequently, a
parametric study of the AST application to assist in attenuating the HFTO can be
pursued via the distributed model of drill-string dynamics with the AST in Chap-
ter 5. To optimize this attenuation effort and the drilling efficiency improvement,
the synergy between the AST and an active control strategy within the cascade
scheme, as depicted in Figure 6.1, can also be the next feasible path-forward.
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Appendix to Chapter 2

A.1 Coordinate transformation
The drill-string dynamics including AST are expressed in a set of dependent
coordinates qc =

[
U Φ Ub Φb

]> combined with the following holonomic
constraint:

hast = α (Φ− Φb)− (U − Ub) = 0. (A.1)
The dynamics of the constrained system can also be given in variational form:

(δqc)> (Mcq̈c − hc (t,qc, q̇c)−Wcλ) = 0, (A.2)

which holds for all the virtual displacements δqc that satisfy the variational holo-
nomic constraint given by

W>
c δqc = 0, (A.3)

where W>
c is the constraint Jacobian:

W>
c = δhast

δqc =
[
−1 α 1 −α

]>
. (A.4)

Expressions for Mc and hc (t,qc, q̇c) can be found in [186]. The set of independent
coordinates q =

[
U Ub Φb

]> is introduced, such that it uniquely determines
qc = qc(q). The relation between the set of dependent and independent coor-
dinates is explicitly given by a constant transformation matrix T. Hence, the
following relations hold:

qc = Tq, q̇c = Tq̇, q̈c = Tq̈, (A.5)

with

T =


1 0 0
1
α

−1
α 1

0 1 0
0 0 1

 . (A.6)
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Moreover, the virtual displacement in terms of the independent coordinates can
be written as follows:

δqc = Tδq. (A.7)

Substitution of Eqs. (A.5) and (A.7) into Eq. (A.2) results in the following
equation

(δq)>
(
T>McTq̈ −T>hc (t,Tq,Tq̇)−T>Wcλ

)
= 0, ∀δq. (A.8)

Since the generalized coordinates q are independent, all virtual displacements
δq are admissible and therefore the dynamics in independent coordinates can be
written as follows:

T>McTq̈ −T>hc (t,Tq,Tq̇) = T>Wcλ. (A.9)

The new system matrices, explicitly given in Eq. (2.5), are now given by

M = T>McT,
h (t,q, q̇) = T>hc (t,Tq,Tq̇) , (A.10)

W = T>Wc.
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Appendix to Chapter 4

B.1 Dimensionless models
To reduce the number of parameters and to facilitate the numerical simulations,
the equations of motion (in the generic form in Eq. (4.24)) are scaled to render
them dimensionless. The following scales for length and time, respectively, are
used for constructing the dimensionless models:

L∗ = 2Cp
ε̄a2 , and t∗ =

√
I

Cp
. (B.1)

Here, parameter ε̄ denotes the mean value of the intrinsic specific energy for
all rock layers involved in drilling interbedded formations. Typically, we select
around t∗ = 1 sec and L∗ = 1 mm.

Dimensionless coordinates The characteristic length L∗ and characteristic
time t∗ are utilized to introduce the following dimensionless generalized coordi-
nates at the bit:

ub(τ) := Ub(t)
L∗

, φb(τ) := Φb(t). (B.2)

In Eq. (B.2), the dimensionless time τ is defined as follows:

τ := t

t∗
. (B.3)

In addition, in the AST model the following dimensionless coordinate is introduced
to describe the motion of the drill-string section above the AST in the axial
direction:

u(τ) := U(t)
L∗

. (B.4)
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The nominal angular velocities imposed at the surface can be written in dimen-
sionless form as ω0 = Ω0t∗.

Furthermore, the dimensionless delayed axial and angular displacement coordi-
nates are denoted by ub(τ−τn) and φb(τ−τn), respectively, with the dimensionless
time delay τn := tn

t∗
. Hence, the implicit equation (4.5) reads in a dimensionless

formulation as follows:
φb(τ)− φb(τ − τn) = 2π

n
, (B.5)

which is used for calculating τn. The total depth-of-cut d, as given by Eq. (4.6),
is also scaled according to:

δ (τ) = nδn (τ) := d (t)
L∗

= n (ub(τ)− ub(τ − τn)) . (B.6)

Bit/rock parameters in layered formations Following the interface laws in
Section 4.2.1, we define the ratio of the associated rock mechanical parameters in
the cutting and frictional contact components of two consecutive rock layers with
distinct mechanical properties as follows:

gεk := εk−1

εk
, gµk := µk−1

µk
, gσk := σ̄k−1

σ̄k
, (B.7)

for the intrinsic specific energy, the frictional coefficients, and the contact pres-
sures, respectively. The ratios for the intrinsic specific energy and the contact
pressures describe the following conditions:


g?k > 1, (a) transition from hard to soft layer,
g?k = 1, (b) no transition (homogeneous),
g?k < 1, (c) transition from soft to hard layer,

(B.8)

with ? ∈ {ε, σ}.

In addition, we also define the ratio between the intrinsic specific energy of the
lower (kth) layer and the mean value of the intrinsic specific energy of all rock
layers as:

ḡεk := εk
ε̄
. (B.9)

The rock parameters (and their ratios) are associated to the current layer(s) and
updated based on the layer index k, in which the bit engages during drilling the
interbedded formations (see the condition in Eq. (4.8)).

Furthermore, in drilling layered formations as considered here, the evolution of
both normalized bit-design parameters in Eqs. (4.12) and (4.18) is based on the
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dimensionless bit engagement zb as described by the dimensionless formulation
of condition Eq. (4.8). Precisely, this engagement zb is utilized to update the
dimensionless engagement radius rb at the bit via the bit profile relation in Eq.
(4.4). Subsequently, this radius is used for updating both bit-design parameters.

The dimensionless value of the depth Lk is given by

lk := Lk
L∗
. (B.10)

Hence, we can rewrite the update of the bit engagement in Eq. (4.8) into the
following dimensionless form:

zb(τ) = min
(
b

a
,
L∗
a

(ub(τ)− lk∗−1)
)
, (B.11)

considering Eq. (4.2) and the bit radius a. The index k∗ is the minimum k ∈
{1, 2, 3, . . . ,K} such that it holds that L∗

a (ub(τ)− lk∗−1) ≥ 0, with l0 = 0. The
layer index k∗ is also updated based on the latest axial displacement ub(τ) relative
to the depth lk−1 as the bit progresses into the lower layer.

Generic form of the dimensionless models The generic form of equations
of motion with original generalized coordinates q in Eq. (4.24) is expressed in
dimensionless form as follows:

Mz′′ −H (τ, z, z′, zτn) =WL. (B.12)

The single and double prime symbols denote the derivatives of the generalized
coordinates z w.r.t. time τ in Eq. (B.3). Next, this generic form is used to
express the dimensionless BM and AST models as the basis for developing the
numerical solver.

Dimensionless benchmark (BM) model The dimensionless generalized co-
ordinates used in the dimensionless BM model are defined as follows:

z(τ) :=
[
ub(τ) φb(τ)

]>
. (B.13)

We construct the following relations between the original and dimensionless co-
ordinates in matrix form:

q = Γz, (B.14)
by considering a transformation matrix

Γ =
[
L∗ 0
0 1

]
. (B.15)

The delayed axial and angular displacements in Eq. (4.26) are stored in zτn

defined as:
zτn

:= z (τ − τn) =
[
ub (τ − τn) φb (τ − τn)

]>
, (B.16)
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such that qtn = Γzτn holds.

With these dimensionless coordinates and considering Eqs. (4.27) – (4.31), the
dimensionless equations of motion of the BM model in the generic form of Eq.
(B.12) are characterized by the following matrices and columns:

M =
[

1 0
0 1

]
, (B.17a)

H =
[

−γu′b
(−γφφ′b − (φb − ω0 τ))

]
· · ·

· · ·+
[
−ψ̄nδnḡεk

(
gεk

(
1− ϑlζ(rb)

)
+ ϑlζ(rb)

)
−nδnḡεk

(
gεk
(
1− r2

b

)
+ r2

b

) ]
+
[
ψ̄Wa

0

]
, (B.17b)

W =
[
ψ̄ 0
0 1

]
, (B.17c)

L =
[
Lba

Lbt

]>
. (B.17d)

In Eq. (B.17d), the column L is the dimensionless form of the column λ in Eq.
(4.30) describing the non-smooth dynamics and defined via the following scaling:

L :=
[

a
2Cpζ∗ 0

0 1
Cp

]
λ =

[
a

2Cpζ∗ 0
0 1

Cp

] [
λa

λt(λa)

]
. (B.18)

The first entry of the column L is the dimensionless form of the total contact
force λa in Eq. (4.13) and is written as an inclusion:

Lba
∈ − a

2Cpζ∗
λ̄ba

g (u′b) , (B.19)

with the set-valued function g (u′b) following the definition in Eq. (4.14). In Eq.
(B.19), λ̄ba is the nominal value of the total contact force λa in the kth rock layer:

λ̄ba := (gσk (1− rb) + rb)na `n σ̄k. (B.20)

The second entry of the column L in Eq. (B.18) is the dimensionless form of the
total frictional torque λt in Eq. (4.16) and is given by the following inclusion:

Lbt
∈ βkLba

Sign (φ′b) , (B.21)
with

βk :=
(gσk g

µ
k (1− ϑlξ(rb)) + ϑlξ(rb))
(gσk (1− rb) + rb)

µkξζ
∗. (B.22)

Note that the sign-dependency of the frictional torque Lbt on the sign of the
torsional bit velocity φ′b also models a torsional sticking mode, and hence can be
a beneficial insight for studying the onset of (torsional) stick-slip vibrations.
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The dimensionless form of the applied weight at the top surface is given by

Wa = a

2Cpζ∗
Wa. (B.23)

Moreover, the dimensionless physical parameters of benchmark drill-string system
and the bit/rock parameters involved in the equations of motion are listed in Table
B.1 (on the basis of the properties of a real drilling system: in Table B.2 for the
bit parameters and in Table B.3 for the drill-string parameters).

Table B.1: Characteristic system parameters.
Parameter Name Symbol Value

Characteristic length L∗ = 2Cp

εavga2 0.82

Characteristic time t∗ =
√

Itot
Cp

0.45

Scaled axial damping γ = D
M

√
I
Cp

6.4× 10−3

Scaled torsional damping (for BM) γφ = DΦ√
ICp

2.13× 10−4

Drill-string design ψ̄ = aIζ∗ε̄
CpM

31.83
Drill bit design (nominal) βnom = ξζ∗ 0.64
Mass ratio m∗ = Ma

M
0.92

Inertia ratio ι = Ia
I

0.86
Torsional damping above AST γφ1 = DΦa√

CpI
2.05× 10−4

Torsional damping below AST γφ2 = DΦb√
CpI

7.39× 10−6

Inertia mass ratio κ = I
α2M 0.56

Scaled lead of AST ν = κα
L∗

44.31

Scaled axial stiffness of AST ηb =
√

KbI
MCp

2.06

Scaled axial damping of AST γb = Db

M

√
I
Cp

0.45

Table B.2: Bit parameters (see also [181, 187]).
Parameter Name Symbol Value Unit

Wear-flat length `n 1.2× 10−3 m
Cutting-face orientation ζ 0.625 —
Number of blades n 6 —

Dimensionless AST model The dimensionless generalized coordinates of the
AST model are defined as follows (by referring to the original coordinates in Eq.
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Table B.3: Drill-string parameters (see also [181, 187]).
Parameter Name Symbol Value Unit

Steel density ρ 8000 kg/m3

Steel shear modulus G 77 GPa
Steel elasticity modulus E 200 GPa
Drill pipe length Lp 1500 m
Length BHA below AST Lb 40.9 m
Length BHA above AST Lhp 113.1 m
Drill pipe outer radius rpo 0.067 m
Drill pipe inner radius rpi 0.056 m
Heavy drill pipe outer radius rhpo 0.083 m
Heavy drill pipe inner radius rhpi 0.038 m
AST outer radius rbo 0.083 m
AST inner radius rbi 0.038 m
AST helix (spline) radius rsp 0.0640 m
AST Lead angle β π

4 rad
AST Lead p = 2πrsp tan β 0.4021 m
AST constraint constant α = p

2π 0.0640 m/rad
Drill pipe mass Mp = ρπ(r2

po − r2
pi)Lp 5.1× 104 kg

Heavy drill pipe mass Mhp = ρπ(r2
hpo − r2

hpi)Lhp 1.548× 104 kg
BHA below AST mass Mb = ρπ(r2

bo − r2
bi)Lb 5.597× 103 kg

Area of cross section pipe Ap = π(r2
po − r2

pi) 0.0043 m2

Area of cross section BHA Ahp = π(r2
hpo − r2

hpi) 0.0171 m2

Area of cross section AST Ab = π(r2
bo − r2

bi) 0.0171 m2

Drill pipe inertia Ip = ρLp
π
2 (r4

po − r4
pi) 194.4638 kg.m2

BHA inertia - above AST Ihp = ρLhp
π
2 (r4

hpo − r4
hpi) 64.4869 kg.m2

BHA inertia - below AST Ib = ρLb
π
2 (r4

bo − r4
bi) 23.3202 kg.m2

Drill pipe torsional stiffness Cp = GJp

Lp
831.8729 N.m/rad

Drill-string axial damping D 1035 N.s/m
Torsional damping - above AST DΦa

0.0765 Nm.s/rad
Torsional damping - below AST DΦb

0.00275 Nm.s/rad
AST axial spring stiffness Kb 1522.5× 103 N/m
AST axial damping Db 72× 103 N.s/m

(4.36)):

z(τ) :=
[
u (τ) ub (τ) φb (τ)

]>
. (B.24)

We construct the same matrix relations as in Eq. (B.14) between the original
and dimensionless coordinates of AST model, such that we consider the following
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transformation matrix:

ΓAST =

 L∗ 0 0
0 L∗ 0
0 0 1

 , (B.25)

and later replace matrix Γ in Eq. (B.14) with matrix ΓAST to read:

q = ΓAST z, (B.26)

The delayed coordinates of the AST model in Eq. (4.37) are defined in this
dimensionless coordinate vector form:

zτn
:= z (τ − τn) =

[
u (τ − τn) ub (τ − τn) φb (τ − τn)

]>
, (B.27)

such that qtn = ΓAST zτn
holds. Thus, with these dimensionless coordinates and

considering Eqs. (4.38a) – (4.38c), the dimensionless AST model in the generic
form of Eq. (B.12) is described by the following matrices:

M =

 (m∗ + κι) −κι νι
−κι (1 + κι−m∗) −νι
κ
ν ι −κν ι 1

 , (B.28a)

H =

 −η2
b (u− ub)− γu′ − γb (u′ − u′b)− κγφ1 (u′ − u′b) · · ·
η2
b (u− ub) + γb (u′ − u′b) + κγφ1 (u′ − u′b) · · ·
−γφ1

κ
ν (u′ − u′b)− γφ1φ

′
b − γφ2φ

′
b · · ·

· · · − νγφ1φ
′
b − κ (u− ub)− νφb + νω0τ

· · ·+ νγφ1φ
′ + κ (u− ub) + νφb − νω0τ

· · · − κ
ν (u− ub)− φb + ω0τ

 · · ·
· · ·+

 0
−nψ̄δnḡεk

(
gεk

(
1− ϑlζ(rb)

)
+ ϑlζ(rb)

)
−nδnḡεk

(
gεk
(
1− r2

b

)
+ r2

b

)
+

 ψ̄Was

ψ̄Wbs

0

 , (B.28b)

W =

 0
ψ̄
0

0
0
1

 . (B.28c)

The dimensionless frictional/contact components of the bit/rock interaction in
the AST model is characterized in the same manner as in Eq. (B.17d) for the BM
model (with also considering Eqs. (B.18) – (B.22)).

In Eq. (B.28b), the dimensionless applied weight at the top surface, which consists
of the total submerged weight of the drill-string section above the AST and the
applied hook-load H0, is given by

Was = a

2Cpζ∗
(Was −H0) , (B.29)

and the dimensionless total submerged weight of the drill-string section below the
AST reads as

Wbs = a

2Cpζ∗
Wbs. (B.30)
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The parameters of the dimensionless AST model listed in Table B.1 are calculated
on the basis of Tables B.2 and B.3. The corresponding numerical parameter values
also use the cases studied in [181, 187].

B.2 Computational Method for the Dynamic
Responses

The equations of motion Eq. (B.12) are solved numerically by employing the time-
stepping method with Moreau’s midpoint rule at the velocity level (see further
details about this time-integration scheme for non-smooth dynamical systems in
[8, 165]). In general, this method can be summarized as follows. First, we recall
the generic form of EOMs in Eq. (B.12):

Mz′′ −H (τ, z, z′, zτn
) =WL. (B.31)

The column z and the matrix M represent the independent generalized coordi-
nates and the mass matrix, respectively. The column H contains all the gen-
eralized (smooth) forces and torques except the non-smooth (nonlinear) part.
The vector L contains the non-smooth forces and torques associated with the
set-valued forces laws, i.e., the contact force and frictional torque arising from
the bit/rock interaction. The matrix W stores the associated directions of these
non-smooth forces and torques.

Second, we rewrite Eq. (B.31) as follows:

u̇ =M−1 (H (τ, z,u, zτn
) +WL) , (B.32)

with the generalized velocities u = z′. The first-order discretization of these
velocities (based on Moreau’s midpoint rule for the time-stepping method and
w.r.t. time τ) is then given by

u̇ = uE − uB

∆τ . (B.33)

Herein, the velocities at the discrete time instants τB and τE are denoted by uE
and uB , respectively, with a time-step ∆τ = τE − τB > 0. Hence, we combine
Eq. (B.33) into Eq. (B.32) that gives

uE =M−1 (HM +WML
)

∆τ + uB , (B.34)

for solving the EOMs in Eq. (B.31). In Eq. (B.34), the column HM and the
matrix WM , respectively, are given by

HM := H(τM , zM ,uB , zMτn
), (B.35a)

WM :=W(τM , zM ), (B.35b)
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that are approximated at the (mid-step) time instant τM := τB + ∆τ
2 . Herein,

the generalized coordinates at the mid-step time instant τM are denoted by

zM = zB + uB ∆τ
2 , (B.36)

and the delayed generalized coordinates prior to the mid-step time instant τM
are defined by

zMτn
:= z

(
τM − τn

)
. (B.37)

Two pivotal elements in numerically solving the EOMs in Eq. (B.31) for both
BM and AST models are: (i) the time-delay calculation arising from the cutting
process (i.e., solving for τn based on Eq. (B.5)) that is required to evaluate HM
in Eq. (B.35a), and (ii) the nonlinear (non-smooth) parts of the WOB and TOB
due to the (frictional) contact in the bit/rock interaction (i.e., solving Eqs. (B.19)
and (B.21), respectively).

First, the time-delay τn in Eq. (B.5) is state-dependent. Hence, we adopt the
technique developed in [181] to calculate the time-delay for each bit rotation,
namely based on the interpolation between the generalized coordinates zM at the
mid-step time instant τM in Eq. (B.36) and the delayed generalized coordinates
zMτn

prior to the mid-step time instant τM in Eq. (B.37) via the implicit equation
in Eq. (B.5).

This time-delay is then utilized with the axial response of the system for updating
the depth-of-cut in Eq. (B.6) that is required to compute the WOB and TOB of
the cutting component (due to the bit/rock interaction) stored in the column HM
in Eq. (B.35a). Note also that to evaluate this column HM in Eq. (B.35a) at the
mid-step discrete time instant τM , we refer to Eq. (B.17b) for the BM model and
Eq. (B.28b) for the AST model.

Second, the WOB and TOB due to the (frictional) contact are formulated as the
set-valued force laws that are solved numerically via the inclusions in Eqs. (B.19)
and (B.21), respectively. These inclusions can be rewritten equivalently using a
proximal-point formulation on velocity level [104]:

Lba
= proxCa

(Lba
− r1u

′
b) , (B.38a)

Lbt = proxCt
(Lbt − r2φ

′
b) , (B.38b)

with r1 and r2 as the strictly positive constants that shall be tuned in the numer-
ical computation, and the associated convex sets defined as follows:

Ca =
{
Lba
| − a

2Cpζ∗
λ̄ba

6 Lba
6 0
}
, (B.39a)

Ct = {Lbt
| βkLba

6 Lbt
6 −βkLba

} , (B.39b)
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considering the definitions in Eqs. (B.20) and (B.22).

Note that the following bit/rock parameters in the case of drilling layered forma-
tions are adapted with the bit engagement in Eqs. (4.2) and (4.4): (i) the bit
parameters for the cutting and frictional components (ϑlζ in Eq. (4.12) and ϑlξ in
Eq. (4.18), respectively), and (ii) the rock parameters for the cutting component
(the rock intrinsic specific energy ε) and in the frictional component (the frictional
coefficient µ and the maximum contact pressure σ̄) via Eq. (B.7).

The proximal point formulations in Eqs. (B.38a) – (B.38b) are affected by this
bit/rock parameters adaptation (via the associated convex sets in Eqs. (B.39a)
– (B.39b)) and solved numerically using an iterative technique, in this case a
Jacobian-relaxation (JOR) scheme [165].

Algorithm B.1 summarizes the implementation of this time-stepping method for
numerically solving the delay differential inclusions representing the BM and AST
models. The developed algorithm for solving these EOMs converges with a com-
putational time approximately less than 10 minutes (on an Intel(R) Core(TM)
i7-6700HQ, 2.60GHz CPU) for the case study presented in Section 4.3, i.e., Figure
4.8 for the BM model and Figure 4.10 for the AST model.

Nominal solutions as the initial values for BM and AST models. For
the initial conditions in the numerical computation, we assume that the bit is
steadily drilling in the first layer (e.g., k = 1) and fully engaged in this layer
(e.g., rb = 1). Hence, we consider the same nominal values presented in [187] as
the initial conditions; in the case of a nominal drilling operation, the axial and
torsional velocities are constant and positive (no vibrations), and consequently
nominal values of the interface laws are obtained.

B.3 The Ratio of the Weights-On-Bit
The reaction weights due to the cutting process and frictional contact in the
bit/rock interaction in drilling interbedded formations are explored to further
analyze the effect of the AST on the drill-string dynamics. Let us define the
cutting force ratio and the wear-flat contact force ratio for the kth layer as follows:

Wc

k = 〈W c
k 〉

〈W c
k 〉+

〈
W f
k

〉 , and Wf

k =

〈
W f
k

〉
〈W c

k 〉+
〈
W f
k

〉 , (B.40)

respectively. Here 〈W c
k 〉 and

〈
W f
k

〉
refer to the averaged WOB resulting from

the cutting and frictional contact, respectively, in the bit/rock interaction for
each layer (see also Eqs. (4.10) and (4.13)). Hence, the averaged values of the
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Algorithm B.1 Time-stepping method (with Moreau’s midpoint rule) for solving
the (dimensionless) EOMs of BM and AST models in interbedded formation.
1: Initialize the generalized coordinates zB and the generalized velocities uB at

the discrete time instant τB .
2: Initialize the rock layer index k∗ = 1 and the interface depth l0 = 0 (see Eq.

(B.10)).
3: Initialize the frictional component (Lba and Lbt) based on the nominal values.
4: Compute τM ← τB + ∆τ

2 . . Start the mid-step; given the time step ∆τ .
5: Compute zM ← zB + uB ∆τ

2 . . Update generalized coordinates at τM . Note
that the velocities u = z′.

6: Compute the bit engagement zb in Eq. (B.11).
7: Update the rock layer index k∗ as the minimum k ∈ {1, 2, 3, . . . ,K} such that

it holds that L∗
a (ub(τ)− lk∗−1) ≥ 0 (see Eq. (B.11)).

8: Update the bit parameters with the bit profile in Eq. (4.4): ϑlζ in Eq. (4.12)
and ϑlξ in Eq. (4.18).

9: Update the rock parameters: ε, µ and σ̄ via Eqs. (B.7) - (B.8).
10: Compute the delayed generalized coordinates zMτn

← z
(
τM − τn

)
.

11: Compute the time delay τn based on the interpolation between zM and zMτn

via the implicit equation in Eq. (B.5).
12: Compute the depth-of-cut δ(τM , τn) based on zM and zMτn

using Eq. (B.6).
13: Approximate HM ← H(τM , zM ,uB , zMτn

). . Update generalized (smooth)
forces and torques at τM .

14: Update WM ←W(τM , zM ). . Update force directions of non-smooth forces
and torques at τM .

15: Solve the proximal point equations for Lba
and Lbt

in Eqs. (B.38a) - (B.38b)
using JOR iterative scheme:

16: while Not converged do
17: Compute the velocities uE based on Eq. (B.34). . Update generalized

velocities at τE = τB + ∆τ .
18: Update the velocities u′b and φ′b based on uE .
19: Update Loldba

= Lba
and Loldbt

= Lbt
. . From the previous iteration.

20: Compute Lba
= min

(
max

(
− a

2Cpζ∗ λ̄ba
,
(
Loldba

− r1u
′
b

))
, 0
)
. . see Eqs.

(B.38a) and (B.39a).
21: Compute Lbt

= min
(
max

(
βkLba

,
(
Loldbt

− r2φ
′
b

))
,−βkLba

)
. . see Eqs.

(B.38b) and (B.39b).
22: Converged if:

∥∥Lba − Loldba

∥∥
2 < error tolerance value and

∥∥Lbt − Loldbt

∥∥
2 <

error tolerance value.
23: end while
24: Compute uE using Eq. (B.34) with the updated frictional components Lba

and Lbt
.

25: Compute zE ← zM + uE ∆t
2 . . Update generalized coordinates at

τE = τB + ∆τ .
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(a)

(b)

Figure B.1: Comparison of (a) the averaged cutting force ratio and (b) the aver-
aged wear-flat contact force ratio between the benchmark (BM, with solid line)
and AST (dashed line) models under the effects of the layer thickness variation
(H/b ∈ {1, 2, · · · , 10}) and for H0 = 440 kN (blue line) and H0 = 420 kN (red
line) with Ω0 = 80 rpm.

cutting force ratio and the contact force ratio (Wc and Wf , respectively) over
the total time ∆t in drilling interbedded formations can be also calculated by
according to Eqs. (4.39) and (4.40) (also by considering all the force ratios in the
(k − 1)th and kth layers calculated from Eq. (B.40)).

The values of the cutting force ratio and the contact force ratio based on the
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Table B.4: Variable list.
Variable Name Symbol Unit

Axial displacement of drill-string above AST U m
Bit axial displacement Ub m
Torsional displacement of drill-string above AST Φ rad
Bit torsional displacement Φb rad
Axial velocity of drill-string above AST U̇ m/s

Bit axial velocity (its averaged value in kth layer) U̇b(
〈
U̇ bk
〉
) m/s

Torsional velocity of drill-string above AST Φ̇ rad/s

Bit torsional velocity (its averaged value in kth layer) Φ̇b(
〈
Φ̇bk
〉
) rad/s

WOB of the cutting component
W c
k (〈W c

k 〉) Nin the interface laws (its averaged value in kth layer)
WOB of the frictional component

W f
k (
〈
W f
k

〉
) Nin the interface laws (its averaged value in kth layer)

TOB of the cutting component
T ck (〈T ck 〉) Nmin the interface laws (its averaged value in kth layer)

TOB of the frictional component
T fk (

〈
T fk

〉
) Nm

in the interface laws (its averaged value in kth layer)
Averaged depth-of-cut (DOC) in kth layer 〈dk〉 m

dynamic responses of both BM and AST models are presented in Figure B.1 at top
and bottom, respectively. In Figure B.1 (top) with the presence of the AST, the
cutting force ratio is higher while the contact force ratio is lower, when compared
to the results of BM model. These comparison results support the indication on
the occurrence of more axial vibrations associated with the presence of the AST
that leads to reduce the frictional torque and more weight used for the cutting –
all in averaged sense.

B.4 Additional variable list
The additional list of variables used in the model formulations and the simulation
analyses are given in Table B.4.
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Appendix to Chapter 5

C.1 Steady-state solutions
In the absence of any vibrations, the axial and torsional velocities are given by
VL = Vb = V0 and ΩL = Ωb = Ω0, respectively, and assume constant velocities
V0 > 0 and Ω0 > 0. Herein, the steady-state solutions for both BM and AST
models are unique and given below. Note that the nominal generalized positions
in both BM and AST models are affected by the static deformations of the drill-
string structure and the prescribed boundary conditions; see also the works in
[77, 187].

C.1.1 BM model
The initial axial displacements (i.e., due to the static deformation at the time-
instant t = 0) at the bit and at the interface are set to be Ubs = 0 and UL0 = 0,
respectively. The initial torsional displacements at the bit and at the interface are
equal to Φbs = 0 and ΦL0 = 0, respectively. Furthermore, based on the dynamics
of the lower part in Eq. (5.17) with the associated matrices in Eqs. (5.18a) –
(5.18d) for the BM model, the steady-state force and torque at the interface,
denoted by WL0 and TL0, respectively, are given by

WL0 = Wg −Wb0, (C.1)
TL0 = Tb0 +DφΩ0. (C.2)

The nominal weight-on-bit and torque-on-bit due to the bit-rock interaction, fol-
lowing Eqs. (5.7a) and (5.7b), are, respectively, given by

Wb0 = Wc0 +Wf0, (C.3)
Tb0 = Tc0 + Tf0. (C.4)

177
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In a nominal operation (where the bit is fully mobilized), the frictional component
of the bit-rock interaction (i.e., the weight Wf0 and torque Tf0) are equal to the
maximum values of the contact force and frictional torque in Eqs. (5.8a) – (5.9).
For the cutting component in Eqs. (5.11a) – (5.11b), the nominal weightWc0 and
torque Tc0 are dependent to the following nominal depth-of-cut obtained based
on the depth-of-cut evolution in Eq. (5.13):

dn0 = 2πV0

nΩ0
. (C.5)

Note that V0 is a nominal axial velocity of the drill-string system (e.g., in the
steady-state drilling condition).

In a steady-state condition, the PDE of the axial dynamics of the drill-pipe in
Eq. (5.2b) becomes

WL0 −H0 = kaρAV0L. (C.6)

By substituting the nominal weight WL0 (based on the axial equilibrium at the
interface in Eq. (C.1)) into Eq. (C.6) and considering the nominal weight-on-bit
in Eq. (C.3) (based on the nominal depth-of-cut in Eq. (C.5)), we obtain the
nominal axial velocity as follows:

V0 = Wg −H0 −Wf0(
2πKa

Ω0

)
+ kaρApL

, (C.7)

with Ka = aζε.

C.1.2 AST model

For the case of a steady-state drilling condition in the AST model, the initial axial
and torsional displacements (i.e., due to the static deformation at the time-instant
t = 0) at the bit are set to be Ubs = 0 and Φbs = 0, respectively. Moreover, the
equilibria at the interface (of the drill-pipe and BHA parts), based on the BHA
dynamics in Eq. (5.17) with the associated matrices in Eqs. (5.22a) – (5.22d), read
the nominal weight and torque due the interaction at this interface, respectively,
as follows:

WL0 = KbUL0 −Wag −
1
α

(TL0 −DφaΩ0) , (C.8)

TL0 = Tb0 + (Dφa
+Dφb

) Ω0. (C.9)

Note that the nominal weight-on-bit in Eq. (C.3) and torque-on-bit in Eq. (C.4)
due to the bit-rock interaction also apply in the AST model. In addition, this
steady-state force and torque at the interface in Eqs. (C.8) – (C.9) and the
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holonomic constraint of the AST in Eq. (5.24) give the initial axial and torsional
displacements at the interface, respectively, as follows:

UL0 = 1
Kb

(
Wb0 −Wbg + 1

α
(TL0 −Dφa

Ω0)
)
, (C.10)

ΦL0 = UL0

α
. (C.11)

In a steady-state condition, the equilibrium in Eq. (C.6) also applies in the AST
model. Hence, substituting the nominal weight at the interface WL0 into Eq.
(C.6) and considering Eqs. (C.9) – (C.11) in this substitution give the nominal
axial velocity for the AST model as follows:

V0 = Wag +Wbg −H0 −Wf0(
2πKa

Ω0

)
+ kaρApL

. (C.12)

C.2 List of variables and parameters
The additional list of variables used in the model formulations and the simulation
analyses are given in Tables C.1 and C.2.

Table C.1: Nomenclature.
Kinematic variables/coordinates
t [s] Time coordinate
x [m] Axial position
U [m] Axial displacement
Φ [rad] Angular displacement

State variables – in time-domain
V [m/s] Axial velocity
Ω [rad/s] Angular velocity
W [N ] Force (Weight)
T [Nm] Torque
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Table C.2: Parameter values of the bit-rock interaction, the drill-string, and the
AST.
Bit-rock parameters
ε [MPa] Intrinsic specific energy of the rock
σ [MPa] Normal contact stress (bit-rock contact)
µ [−] Friction coefficient (bit-rock contact)
n [−] Number of bit blades
a [m] Bit radius
` [m] Wearflat length
ζ [−] Cutting face orientation
ξ [−] Orientation and distribution of wear-flats

Drill-string parameters
ρ [kg/m3] Density of the drill-string material
E [GPa] Young’s modulus (elasticity modulus)
G [GPa] Shear modulus
L [m] Total length of drill-pipe
A [m2] Drill-pipe area
J [m4] Drill-pipe polar inertia
ka [−] Axial domain damping
kt [−] Torsional domain damping
V0 [m/s] Top-drive (nominal) axial velocity
Ω0 [RPM] Top-drive (nominal) angular velocity
H0 [kN] Hook-load
La [m] Length of the top part of BHA (or above the AST)
Lb [m] Length of the bottom part of BHA (or below the AST)
I [kg.m2] Total inertia of the BHA
Ia [kg.m2] Inertia of the top part of BHA (or above the AST)
Ib [kg.m2] Inertia of the bottom part of BHA (or below the AST)
M [kg] Total mass of the BHA
Ma [kg] Mass of the top part of BHA (or above the AST)
Mb [kg] Mass of the bottom part of BHA (or below the AST)
Dφ [Nm.s/rad] Total torsional damping of the BHA
Dφa

[Nm.s/rad] Torsional damping of the top part of BHA (or above the AST)
Dφb

[Nm.s/rad] Torsional damping of the bottom part of BHA (or below the AST)

AST parameters
p [m] AST lead
rsp [m] AST helix (spline) radius
β [rad] AST lead angle
Kb [N/m] AST axial spring stiffness
Db [N.s/m] AST axial damping
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